主动旋转和回旋球形微囊的全新设计

Veerpal Kaur, Subhashree S. Khuntia, Charu Taneja, Abhishek Chaudhuri, K. P. Yogendran, Sabyasachi Rakshit
{"title":"主动旋转和回旋球形微囊的全新设计","authors":"Veerpal Kaur, Subhashree S. Khuntia, Charu Taneja, Abhishek Chaudhuri, K. P. Yogendran, Sabyasachi Rakshit","doi":"10.1101/2024.09.17.613442","DOIUrl":null,"url":null,"abstract":"Engineering spherical self-propelled swimmers that exhibit rotation and directed translation has posed a significant experimental challenge in biomedicine design. Often a secondary external field or asymmetric geometry is employed to generate rotation, complicating the design process. In this work, we utilize spherical Giant Unilamellar Vesicles (GUVs) as chassis and enzymes undergoing cyclic, non-reciprocal conformational changes as power units to establish design principles to synthesize autonomous spherical micro-rotors. Leveraging transient interactions, we induce spontaneous symmetry-breaking in enzyme distribution on GUVs, enabling diverse movements from pure spinning to spiral 3D trajectories. With this design, we now open new avenues for advancing self-propelled systems with biocompatible materials, unlocking innovations in biomedical applications.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"De-novo design of actively spinning and gyrating spherical micro-vesicles\",\"authors\":\"Veerpal Kaur, Subhashree S. Khuntia, Charu Taneja, Abhishek Chaudhuri, K. P. Yogendran, Sabyasachi Rakshit\",\"doi\":\"10.1101/2024.09.17.613442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering spherical self-propelled swimmers that exhibit rotation and directed translation has posed a significant experimental challenge in biomedicine design. Often a secondary external field or asymmetric geometry is employed to generate rotation, complicating the design process. In this work, we utilize spherical Giant Unilamellar Vesicles (GUVs) as chassis and enzymes undergoing cyclic, non-reciprocal conformational changes as power units to establish design principles to synthesize autonomous spherical micro-rotors. Leveraging transient interactions, we induce spontaneous symmetry-breaking in enzyme distribution on GUVs, enabling diverse movements from pure spinning to spiral 3D trajectories. With this design, we now open new avenues for advancing self-propelled systems with biocompatible materials, unlocking innovations in biomedical applications.\",\"PeriodicalId\":501048,\"journal\":{\"name\":\"bioRxiv - Biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.17.613442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.17.613442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在生物医学设计中,设计出具有旋转和定向平移功能的球形自推进游泳器是一项重大的实验挑战。通常情况下,需要使用二级外部磁场或不对称几何形状来产生旋转,从而使设计过程变得更加复杂。在这项工作中,我们利用球形巨型单拉美拉尔囊泡 (GUV) 作为底盘,并利用发生周期性、非互惠构象变化的酶作为动力单元,建立了合成自主球形微型转子的设计原则。利用瞬时相互作用,我们诱发了酶在 GUVs 上分布的自发对称性破坏,从而实现了从纯粹旋转到螺旋三维轨迹的多种运动。有了这种设计,我们现在可以利用生物兼容材料为推进自推进系统开辟新的途径,从而开启生物医学应用领域的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
De-novo design of actively spinning and gyrating spherical micro-vesicles
Engineering spherical self-propelled swimmers that exhibit rotation and directed translation has posed a significant experimental challenge in biomedicine design. Often a secondary external field or asymmetric geometry is employed to generate rotation, complicating the design process. In this work, we utilize spherical Giant Unilamellar Vesicles (GUVs) as chassis and enzymes undergoing cyclic, non-reciprocal conformational changes as power units to establish design principles to synthesize autonomous spherical micro-rotors. Leveraging transient interactions, we induce spontaneous symmetry-breaking in enzyme distribution on GUVs, enabling diverse movements from pure spinning to spiral 3D trajectories. With this design, we now open new avenues for advancing self-propelled systems with biocompatible materials, unlocking innovations in biomedical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信