{"title":"关于平面上的凸记录序列","authors":"Claude Godrèche and Jean-Marc Luck","doi":"10.1088/1742-5468/ad65e5","DOIUrl":null,"url":null,"abstract":"Convex records have an appealing purely geometric definition. In a sequence of d-dimensional data points, the nth point is a convex record if it lies outside the convex hull of all preceding points. We specifically focus on the bivariate (i.e. two-dimensional) setting. For iid (independent and identically distributed) points, we establish an identity relating the mean number of convex records up to time n to the mean number of vertices in the convex hull of the first n points. By combining this identity with extensive numerical simulations, we provide a comprehensive overview of the statistics of convex records for various examples of iid data points in the plane: uniform points in the square and in the disk, Gaussian points and points with an isotropic power-law distribution. In all these cases, the mean values and variances of Nn and Rn grow proportionally to each other, resulting in the finite limit Fano factors FN and FR. We also consider planar random walks, i.e. sequences of points with iid increments. For both the Pearson walk in the continuum and the Pólya walk on a lattice, we characterise the growth of the mean number of convex records and demonstrate that the ratio keeps fluctuating with a universal limit distribution.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"195 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On sequences of convex records in the plane\",\"authors\":\"Claude Godrèche and Jean-Marc Luck\",\"doi\":\"10.1088/1742-5468/ad65e5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convex records have an appealing purely geometric definition. In a sequence of d-dimensional data points, the nth point is a convex record if it lies outside the convex hull of all preceding points. We specifically focus on the bivariate (i.e. two-dimensional) setting. For iid (independent and identically distributed) points, we establish an identity relating the mean number of convex records up to time n to the mean number of vertices in the convex hull of the first n points. By combining this identity with extensive numerical simulations, we provide a comprehensive overview of the statistics of convex records for various examples of iid data points in the plane: uniform points in the square and in the disk, Gaussian points and points with an isotropic power-law distribution. In all these cases, the mean values and variances of Nn and Rn grow proportionally to each other, resulting in the finite limit Fano factors FN and FR. We also consider planar random walks, i.e. sequences of points with iid increments. For both the Pearson walk in the continuum and the Pólya walk on a lattice, we characterise the growth of the mean number of convex records and demonstrate that the ratio keeps fluctuating with a universal limit distribution.\",\"PeriodicalId\":17207,\"journal\":{\"name\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-5468/ad65e5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad65e5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
摘要
凸记录有一个吸引人的纯几何定义。在一个由 d 维数据点组成的序列中,如果第 n 个点位于前面所有点的凸壳之外,那么它就是一个凸记录。我们特别关注双变量(即二维)设置。对于 iid(独立且同分布)点,我们建立了一个特性,它将时间 n 前的凸记录平均数量与前 n 个点的凸壳中的顶点平均数量联系起来。通过将这一特性与大量的数值模拟相结合,我们全面概述了平面中不同实例的独立数据点的凸记录统计:方形和圆盘中的均匀点、高斯点和各向同性幂律分布的点。在所有这些情况下,Nn 和 Rn 的均值和方差都按比例增长,从而产生有限极限法诺因子 FN 和 FR。我们还考虑了平面随机漫步,即具有 iid 增量的点序列。对于连续体中的皮尔逊漫步和晶格上的波利亚漫步,我们都描述了凸记录平均数量的增长特征,并证明该比率以普遍的极限分布不断波动。
Convex records have an appealing purely geometric definition. In a sequence of d-dimensional data points, the nth point is a convex record if it lies outside the convex hull of all preceding points. We specifically focus on the bivariate (i.e. two-dimensional) setting. For iid (independent and identically distributed) points, we establish an identity relating the mean number of convex records up to time n to the mean number of vertices in the convex hull of the first n points. By combining this identity with extensive numerical simulations, we provide a comprehensive overview of the statistics of convex records for various examples of iid data points in the plane: uniform points in the square and in the disk, Gaussian points and points with an isotropic power-law distribution. In all these cases, the mean values and variances of Nn and Rn grow proportionally to each other, resulting in the finite limit Fano factors FN and FR. We also consider planar random walks, i.e. sequences of points with iid increments. For both the Pearson walk in the continuum and the Pólya walk on a lattice, we characterise the growth of the mean number of convex records and demonstrate that the ratio keeps fluctuating with a universal limit distribution.
期刊介绍:
JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged.
The journal covers different topics which correspond to the following keyword sections.
1. Quantum statistical physics, condensed matter, integrable systems
Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo
2. Classical statistical mechanics, equilibrium and non-equilibrium
Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo
3. Disordered systems, classical and quantum
Scientific Directors: Eduardo Fradkin and Riccardo Zecchina
4. Interdisciplinary statistical mechanics
Scientific Directors: Matteo Marsili and Riccardo Zecchina
5. Biological modelling and information
Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina