meds_reader:快速高效的电子病历处理库

Ethan Steinberg, Michael Wornow, Suhana Bedi, Jason Alan Fries, Matthew B. A. McDermott, Nigam H. Shah
{"title":"meds_reader:快速高效的电子病历处理库","authors":"Ethan Steinberg, Michael Wornow, Suhana Bedi, Jason Alan Fries, Matthew B. A. McDermott, Nigam H. Shah","doi":"arxiv-2409.09095","DOIUrl":null,"url":null,"abstract":"The growing demand for machine learning in healthcare requires processing\nincreasingly large electronic health record (EHR) datasets, but existing\npipelines are not computationally efficient or scalable. In this paper, we\nintroduce meds_reader, an optimized Python package for efficient EHR data\nprocessing that is designed to take advantage of many intrinsic properties of\nEHR data for improved speed. We then demonstrate the benefits of meds_reader by\nreimplementing key components of two major EHR processing pipelines, achieving\n10-100x improvements in memory, speed, and disk usage. The code for meds_reader\ncan be found at https://github.com/som-shahlab/meds_reader.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"meds_reader: A fast and efficient EHR processing library\",\"authors\":\"Ethan Steinberg, Michael Wornow, Suhana Bedi, Jason Alan Fries, Matthew B. A. McDermott, Nigam H. Shah\",\"doi\":\"arxiv-2409.09095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing demand for machine learning in healthcare requires processing\\nincreasingly large electronic health record (EHR) datasets, but existing\\npipelines are not computationally efficient or scalable. In this paper, we\\nintroduce meds_reader, an optimized Python package for efficient EHR data\\nprocessing that is designed to take advantage of many intrinsic properties of\\nEHR data for improved speed. We then demonstrate the benefits of meds_reader by\\nreimplementing key components of two major EHR processing pipelines, achieving\\n10-100x improvements in memory, speed, and disk usage. The code for meds_reader\\ncan be found at https://github.com/som-shahlab/meds_reader.\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医疗保健领域对机器学习的需求日益增长,需要处理越来越大的电子健康记录(EHR)数据集,但现有的管道在计算效率和可扩展性方面都不尽如人意。在本文中,我们介绍了 meds_reader,这是一个用于高效处理电子病历数据的优化 Python 软件包,旨在利用电子病历数据的许多固有属性来提高处理速度。然后,我们通过对两个主要电子病历处理流水线关键组件的重新实施,展示了 meds_reader 的优势,在内存、速度和磁盘使用方面实现了 10-100 倍的改进。meds_reader 的代码见 https://github.com/som-shahlab/meds_reader。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
meds_reader: A fast and efficient EHR processing library
The growing demand for machine learning in healthcare requires processing increasingly large electronic health record (EHR) datasets, but existing pipelines are not computationally efficient or scalable. In this paper, we introduce meds_reader, an optimized Python package for efficient EHR data processing that is designed to take advantage of many intrinsic properties of EHR data for improved speed. We then demonstrate the benefits of meds_reader by reimplementing key components of two major EHR processing pipelines, achieving 10-100x improvements in memory, speed, and disk usage. The code for meds_reader can be found at https://github.com/som-shahlab/meds_reader.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信