P V Zacharenko, D V Tsarev, M M Nikitina and A P Alodjants
{"title":"超强耦合机制下具有完整图形界面的量子超材料","authors":"P V Zacharenko, D V Tsarev, M M Nikitina and A P Alodjants","doi":"10.1088/1612-202x/ad6e6c","DOIUrl":null,"url":null,"abstract":"This work studies the ultrastrong coupling (USC) regime for quantized electromagnetic (EM) fields interacting with two-level systems (qubits) arranged within the complete graph nodes of photonic networks beyond the rotating wave approximation. We show the nontrivial behavior of Bloch–Siegert (BS) phase inherent to the field is established in the structure. The collective BS phase dominates under the strong matter-field coupling condition. The network complete graph interface significantly improves the cooperativity parameter to achieve this condition. However, increasing the coupling parameter essentially beyond the strong coupling condition causes saturation effects that suppress the collective photonic phase. We demonstrate that in the USC regime the EM field exhibits the features of a single qubit BS phase enhanced by the network connectivity. Our findings open new perspectives in quantum information processing with superconductor metamaterials.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum metamaterials with complete graph interfaces in the ultrastrong coupling regime\",\"authors\":\"P V Zacharenko, D V Tsarev, M M Nikitina and A P Alodjants\",\"doi\":\"10.1088/1612-202x/ad6e6c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work studies the ultrastrong coupling (USC) regime for quantized electromagnetic (EM) fields interacting with two-level systems (qubits) arranged within the complete graph nodes of photonic networks beyond the rotating wave approximation. We show the nontrivial behavior of Bloch–Siegert (BS) phase inherent to the field is established in the structure. The collective BS phase dominates under the strong matter-field coupling condition. The network complete graph interface significantly improves the cooperativity parameter to achieve this condition. However, increasing the coupling parameter essentially beyond the strong coupling condition causes saturation effects that suppress the collective photonic phase. We demonstrate that in the USC regime the EM field exhibits the features of a single qubit BS phase enhanced by the network connectivity. Our findings open new perspectives in quantum information processing with superconductor metamaterials.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad6e6c\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad6e6c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantum metamaterials with complete graph interfaces in the ultrastrong coupling regime
This work studies the ultrastrong coupling (USC) regime for quantized electromagnetic (EM) fields interacting with two-level systems (qubits) arranged within the complete graph nodes of photonic networks beyond the rotating wave approximation. We show the nontrivial behavior of Bloch–Siegert (BS) phase inherent to the field is established in the structure. The collective BS phase dominates under the strong matter-field coupling condition. The network complete graph interface significantly improves the cooperativity parameter to achieve this condition. However, increasing the coupling parameter essentially beyond the strong coupling condition causes saturation effects that suppress the collective photonic phase. We demonstrate that in the USC regime the EM field exhibits the features of a single qubit BS phase enhanced by the network connectivity. Our findings open new perspectives in quantum information processing with superconductor metamaterials.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.