GenCRF:用于增强型意图驱动信息检索的生成聚类和重构框架

Wonduk Seo, Haojie Zhang, Yueyang Zhang, Changhao Zhang, Songyao Duan, Lixin Su, Daiting Shi, Jiashu Zhao, Dawei Yin
{"title":"GenCRF:用于增强型意图驱动信息检索的生成聚类和重构框架","authors":"Wonduk Seo, Haojie Zhang, Yueyang Zhang, Changhao Zhang, Songyao Duan, Lixin Su, Daiting Shi, Jiashu Zhao, Dawei Yin","doi":"arxiv-2409.10909","DOIUrl":null,"url":null,"abstract":"Query reformulation is a well-known problem in Information Retrieval (IR)\naimed at enhancing single search successful completion rate by automatically\nmodifying user's input query. Recent methods leverage Large Language Models\n(LLMs) to improve query reformulation, but often generate limited and redundant\nexpansions, potentially constraining their effectiveness in capturing diverse\nintents. In this paper, we propose GenCRF: a Generative Clustering and\nReformulation Framework to capture diverse intentions adaptively based on\nmultiple differentiated, well-generated queries in the retrieval phase for the\nfirst time. GenCRF leverages LLMs to generate variable queries from the initial\nquery using customized prompts, then clusters them into groups to distinctly\nrepresent diverse intents. Furthermore, the framework explores to combine\ndiverse intents query with innovative weighted aggregation strategies to\noptimize retrieval performance and crucially integrates a novel Query\nEvaluation Rewarding Model (QERM) to refine the process through feedback loops.\nEmpirical experiments on the BEIR benchmark demonstrate that GenCRF achieves\nstate-of-the-art performance, surpassing previous query reformulation SOTAs by\nup to 12% on nDCG@10. These techniques can be adapted to various LLMs,\nsignificantly boosting retriever performance and advancing the field of\nInformation Retrieval.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GenCRF: Generative Clustering and Reformulation Framework for Enhanced Intent-Driven Information Retrieval\",\"authors\":\"Wonduk Seo, Haojie Zhang, Yueyang Zhang, Changhao Zhang, Songyao Duan, Lixin Su, Daiting Shi, Jiashu Zhao, Dawei Yin\",\"doi\":\"arxiv-2409.10909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Query reformulation is a well-known problem in Information Retrieval (IR)\\naimed at enhancing single search successful completion rate by automatically\\nmodifying user's input query. Recent methods leverage Large Language Models\\n(LLMs) to improve query reformulation, but often generate limited and redundant\\nexpansions, potentially constraining their effectiveness in capturing diverse\\nintents. In this paper, we propose GenCRF: a Generative Clustering and\\nReformulation Framework to capture diverse intentions adaptively based on\\nmultiple differentiated, well-generated queries in the retrieval phase for the\\nfirst time. GenCRF leverages LLMs to generate variable queries from the initial\\nquery using customized prompts, then clusters them into groups to distinctly\\nrepresent diverse intents. Furthermore, the framework explores to combine\\ndiverse intents query with innovative weighted aggregation strategies to\\noptimize retrieval performance and crucially integrates a novel Query\\nEvaluation Rewarding Model (QERM) to refine the process through feedback loops.\\nEmpirical experiments on the BEIR benchmark demonstrate that GenCRF achieves\\nstate-of-the-art performance, surpassing previous query reformulation SOTAs by\\nup to 12% on nDCG@10. These techniques can be adapted to various LLMs,\\nsignificantly boosting retriever performance and advancing the field of\\nInformation Retrieval.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

查询重拟是信息检索(IR)领域的一个著名问题,旨在通过自动修改用户的输入查询来提高单次搜索的成功完成率。最近的方法利用大语言模型(LLMs)来改进查询重构,但通常会生成有限的冗余扩展,这可能会限制其捕捉不同意图的有效性。在本文中,我们首次提出了 GenCRF:一种生成聚类和重构框架,可在检索阶段根据多个有区别的、生成良好的查询自适应地捕捉多样化意图。GenCRF 利用 LLM 从使用定制提示的初始查询中生成可变查询,然后将它们聚类成组,以鲜明地代表不同的意图。此外,该框架还利用创新的加权聚合策略来组合不同的意图查询,以优化检索性能,并集成了新颖的查询评估奖励模型(QERM),通过反馈循环来完善这一过程。在 BEIR 基准上进行的实证实验证明,GenCRF 实现了最先进的性能,在 nDCG@10 上超越了之前的查询重构 SOTAs 多达 12%。这些技术可适用于各种 LLM,大大提高了检索器的性能,推动了信息检索领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GenCRF: Generative Clustering and Reformulation Framework for Enhanced Intent-Driven Information Retrieval
Query reformulation is a well-known problem in Information Retrieval (IR) aimed at enhancing single search successful completion rate by automatically modifying user's input query. Recent methods leverage Large Language Models (LLMs) to improve query reformulation, but often generate limited and redundant expansions, potentially constraining their effectiveness in capturing diverse intents. In this paper, we propose GenCRF: a Generative Clustering and Reformulation Framework to capture diverse intentions adaptively based on multiple differentiated, well-generated queries in the retrieval phase for the first time. GenCRF leverages LLMs to generate variable queries from the initial query using customized prompts, then clusters them into groups to distinctly represent diverse intents. Furthermore, the framework explores to combine diverse intents query with innovative weighted aggregation strategies to optimize retrieval performance and crucially integrates a novel Query Evaluation Rewarding Model (QERM) to refine the process through feedback loops. Empirical experiments on the BEIR benchmark demonstrate that GenCRF achieves state-of-the-art performance, surpassing previous query reformulation SOTAs by up to 12% on nDCG@10. These techniques can be adapted to various LLMs, significantly boosting retriever performance and advancing the field of Information Retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信