用于价格敏感型下一篮子推荐的篮子增强型异质超图

Yuening Zhou, Yulin Wang, Qian Cui, Xinyu Guan, Francisco Cisternas
{"title":"用于价格敏感型下一篮子推荐的篮子增强型异质超图","authors":"Yuening Zhou, Yulin Wang, Qian Cui, Xinyu Guan, Francisco Cisternas","doi":"arxiv-2409.11695","DOIUrl":null,"url":null,"abstract":"Next Basket Recommendation (NBR) is a new type of recommender system that\npredicts combinations of items users are likely to purchase together. Existing\nNBR models often overlook a crucial factor, which is price, and do not fully\ncapture item-basket-user interactions. To address these limitations, we propose\na novel method called Basket-augmented Dynamic Heterogeneous Hypergraph (BDHH).\nBDHH utilizes a heterogeneous multi-relational graph to capture the intricate\nrelationships among item features, with price as a critical factor. Moreover,\nour approach includes a basket-guided dynamic augmentation network that could\ndynamically enhances item-basket-user interactions. Experiments on real-world\ndatasets demonstrate that BDHH significantly improves recommendation accuracy,\nproviding a more comprehensive understanding of user behavior.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation\",\"authors\":\"Yuening Zhou, Yulin Wang, Qian Cui, Xinyu Guan, Francisco Cisternas\",\"doi\":\"arxiv-2409.11695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Next Basket Recommendation (NBR) is a new type of recommender system that\\npredicts combinations of items users are likely to purchase together. Existing\\nNBR models often overlook a crucial factor, which is price, and do not fully\\ncapture item-basket-user interactions. To address these limitations, we propose\\na novel method called Basket-augmented Dynamic Heterogeneous Hypergraph (BDHH).\\nBDHH utilizes a heterogeneous multi-relational graph to capture the intricate\\nrelationships among item features, with price as a critical factor. Moreover,\\nour approach includes a basket-guided dynamic augmentation network that could\\ndynamically enhances item-basket-user interactions. Experiments on real-world\\ndatasets demonstrate that BDHH significantly improves recommendation accuracy,\\nproviding a more comprehensive understanding of user behavior.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

下一篮子推荐(NBR)是一种新型推荐系统,它能预测用户可能一起购买的商品组合。现有的 NBR 模型往往忽略了一个关键因素,那就是价格,而且不能完全捕捉商品-篮子-用户之间的互动。为了解决这些局限性,我们提出了一种名为 "篮子增强动态异构超图(BDHH)"的新方法。BDHH 利用异构多关系图来捕捉商品特征之间错综复杂的关系,其中价格是一个关键因素。此外,我们的方法还包括一个篮子引导的动态增强网络,可以动态增强商品-篮子-用户之间的互动。在真实世界数据集上的实验证明,BDHH 显著提高了推荐的准确性,提供了对用户行为更全面的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
Next Basket Recommendation (NBR) is a new type of recommender system that predicts combinations of items users are likely to purchase together. Existing NBR models often overlook a crucial factor, which is price, and do not fully capture item-basket-user interactions. To address these limitations, we propose a novel method called Basket-augmented Dynamic Heterogeneous Hypergraph (BDHH). BDHH utilizes a heterogeneous multi-relational graph to capture the intricate relationships among item features, with price as a critical factor. Moreover, our approach includes a basket-guided dynamic augmentation network that could dynamically enhances item-basket-user interactions. Experiments on real-world datasets demonstrate that BDHH significantly improves recommendation accuracy, providing a more comprehensive understanding of user behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信