ATFLRec:通过指令调谐大语言模型实现音频-文本融合和低级别自适应的多模态推荐系统

Zezheng Qin
{"title":"ATFLRec:通过指令调谐大语言模型实现音频-文本融合和低级别自适应的多模态推荐系统","authors":"Zezheng Qin","doi":"arxiv-2409.08543","DOIUrl":null,"url":null,"abstract":"Recommender Systems (RS) play a pivotal role in boosting user satisfaction by\nproviding personalized product suggestions in domains such as e-commerce and\nentertainment. This study examines the integration of multimodal data text and\naudio into large language models (LLMs) with the aim of enhancing\nrecommendation performance. Traditional text and audio recommenders encounter\nlimitations such as the cold-start problem, and recent advancements in LLMs,\nwhile promising, are computationally expensive. To address these issues,\nLow-Rank Adaptation (LoRA) is introduced, which enhances efficiency without\ncompromising performance. The ATFLRec framework is proposed to integrate audio\nand text modalities into a multimodal recommendation system, utilizing various\nLoRA configurations and modality fusion techniques. Results indicate that\nATFLRec outperforms baseline models, including traditional and graph neural\nnetwork-based approaches, achieving higher AUC scores. Furthermore, separate\nfine-tuning of audio and text data with distinct LoRA modules yields optimal\nperformance, with different pooling methods and Mel filter bank numbers\nsignificantly impacting performance. This research offers valuable insights\ninto optimizing multimodal recommender systems and advancing the integration of\ndiverse data modalities in LLMs.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ATFLRec: A Multimodal Recommender System with Audio-Text Fusion and Low-Rank Adaptation via Instruction-Tuned Large Language Model\",\"authors\":\"Zezheng Qin\",\"doi\":\"arxiv-2409.08543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender Systems (RS) play a pivotal role in boosting user satisfaction by\\nproviding personalized product suggestions in domains such as e-commerce and\\nentertainment. This study examines the integration of multimodal data text and\\naudio into large language models (LLMs) with the aim of enhancing\\nrecommendation performance. Traditional text and audio recommenders encounter\\nlimitations such as the cold-start problem, and recent advancements in LLMs,\\nwhile promising, are computationally expensive. To address these issues,\\nLow-Rank Adaptation (LoRA) is introduced, which enhances efficiency without\\ncompromising performance. The ATFLRec framework is proposed to integrate audio\\nand text modalities into a multimodal recommendation system, utilizing various\\nLoRA configurations and modality fusion techniques. Results indicate that\\nATFLRec outperforms baseline models, including traditional and graph neural\\nnetwork-based approaches, achieving higher AUC scores. Furthermore, separate\\nfine-tuning of audio and text data with distinct LoRA modules yields optimal\\nperformance, with different pooling methods and Mel filter bank numbers\\nsignificantly impacting performance. This research offers valuable insights\\ninto optimizing multimodal recommender systems and advancing the integration of\\ndiverse data modalities in LLMs.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推荐系统(RS)通过在电子商务和娱乐等领域提供个性化产品建议,在提高用户满意度方面发挥着举足轻重的作用。本研究探讨了如何将多模态数据文本和音频整合到大型语言模型(LLM)中,以提高推荐性能。传统的文本和音频推荐器存在冷启动问题等局限性,而最近在 LLMs 方面取得的进展虽然前景广阔,但计算成本高昂。为了解决这些问题,我们引入了低库自适应(Low-Rank Adaptation,LoRA)技术,它既能提高效率,又不会降低性能。我们提出了 ATFLRec 框架,利用各种 LoRA 配置和模态融合技术将音频和文本模态整合到多模态推荐系统中。结果表明,ATFLRec 优于基线模型,包括传统方法和基于图神经网络的方法,获得了更高的 AUC 分数。此外,使用不同的 LoRA 模块对音频和文本数据进行单独微调可获得最佳性能,不同的池化方法和梅尔滤波器组数量对性能有显著影响。这项研究为优化多模态推荐系统和推进 LLM 中多种数据模态的整合提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ATFLRec: A Multimodal Recommender System with Audio-Text Fusion and Low-Rank Adaptation via Instruction-Tuned Large Language Model
Recommender Systems (RS) play a pivotal role in boosting user satisfaction by providing personalized product suggestions in domains such as e-commerce and entertainment. This study examines the integration of multimodal data text and audio into large language models (LLMs) with the aim of enhancing recommendation performance. Traditional text and audio recommenders encounter limitations such as the cold-start problem, and recent advancements in LLMs, while promising, are computationally expensive. To address these issues, Low-Rank Adaptation (LoRA) is introduced, which enhances efficiency without compromising performance. The ATFLRec framework is proposed to integrate audio and text modalities into a multimodal recommendation system, utilizing various LoRA configurations and modality fusion techniques. Results indicate that ATFLRec outperforms baseline models, including traditional and graph neural network-based approaches, achieving higher AUC scores. Furthermore, separate fine-tuning of audio and text data with distinct LoRA modules yields optimal performance, with different pooling methods and Mel filter bank numbers significantly impacting performance. This research offers valuable insights into optimizing multimodal recommender systems and advancing the integration of diverse data modalities in LLMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信