{"title":"细分和近线性稳定集合","authors":"Tung Nguyen, Alex Scott, Paul Seymour","doi":"arxiv-2409.09400","DOIUrl":null,"url":null,"abstract":"We prove that for every complete graph $K_t$, all graphs $G$ with no induced\nsubgraph isomorphic to a subdivision of $K_t$ have a stable subset of size at\nleast $|G|/{\\rm polylog}|G|$. This is close to best possible, because for $t\\ge\n6$, not all such graphs $G$ have a stable set of linear size, even if $G$ is\ntriangle-free.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subdivisions and near-linear stable sets\",\"authors\":\"Tung Nguyen, Alex Scott, Paul Seymour\",\"doi\":\"arxiv-2409.09400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that for every complete graph $K_t$, all graphs $G$ with no induced\\nsubgraph isomorphic to a subdivision of $K_t$ have a stable subset of size at\\nleast $|G|/{\\\\rm polylog}|G|$. This is close to best possible, because for $t\\\\ge\\n6$, not all such graphs $G$ have a stable set of linear size, even if $G$ is\\ntriangle-free.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove that for every complete graph $K_t$, all graphs $G$ with no induced
subgraph isomorphic to a subdivision of $K_t$ have a stable subset of size at
least $|G|/{\rm polylog}|G|$. This is close to best possible, because for $t\ge
6$, not all such graphs $G$ have a stable set of linear size, even if $G$ is
triangle-free.