布里昂公式的退化版本

Carsten Peterson
{"title":"布里昂公式的退化版本","authors":"Carsten Peterson","doi":"arxiv-2409.09544","DOIUrl":null,"url":null,"abstract":"Let $\\mathfrak{p} \\subset V$ be a polytope and $\\xi \\in V_{\\mathbb{C}}^*$. We\nobtain an expression for $I(\\mathfrak{p}; \\alpha) := \\int_{\\mathfrak{p}}\ne^{\\langle \\alpha, x \\rangle} dx$ as a sum of meromorphic functions in $\\alpha\n\\in V^*_{\\mathbb{C}}$ parametrized by the faces $\\mathfrak{f}$ of\n$\\mathfrak{p}$ on which $\\langle \\xi, x \\rangle$ is constant. Each term only\ndepends on the local geometry of $\\mathfrak{p}$ near $\\mathfrak{f}$ (and on\n$\\xi$) and is holomorphic at $\\alpha = \\xi$. When $\\langle \\xi, \\cdot \\rangle$\nis only constant on the vertices of $\\mathfrak{p}$ our formula reduces to\nBrion's formula. Suppose $\\mathfrak{p}$ is a rational polytope with respect to a lattice\n$\\Lambda$. We obtain an expression for $S(\\mathfrak{p}; \\alpha) :=\n\\sum_{\\lambda \\in \\mathfrak{p} \\cap \\Lambda} e^{\\langle \\alpha, \\lambda\n\\rangle}$ as a sum of meromorphic functions parametrized by the faces\n$\\mathfrak{f}$ on which $e^{\\langle \\xi, x \\rangle} = 1$ on a finite index\nsublattice of $\\text{lin}(\\mathfrak{f}) \\cap \\Lambda$. Each term only depends\non the local geometry of $\\mathfrak{p}$ near $\\mathfrak{f}$ (and on $\\xi$ and\n$\\Lambda$) and is holomorphic at $\\alpha = \\xi$. When $e^{\\langle \\xi, \\cdot\n\\rangle} \\neq 1$ at any non-zero lattice point on a line through the origin\nparallel to an edge of $\\mathfrak{p}$, our formula reduces to Brion's formula,\nand when $\\xi = 0$, it reduces to the Ehrhart quasi-polynomial. Our formulas are particularly useful for understanding how\n$I(\\mathfrak{p}(h); \\xi)$ and $S(\\mathfrak{p}(h); \\xi)$ vary in a family of\npolytopes $\\mathfrak{p}(h)$ with the same normal fan. When considering dilates\nof a fixed polytope, our formulas may be viewed as polytopal analogues of\nLaplace's method and the method of stationary phase. Such expressions naturally\nshow up in analysis on symmetric spaces and affine buildings.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A degenerate version of Brion's formula\",\"authors\":\"Carsten Peterson\",\"doi\":\"arxiv-2409.09544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathfrak{p} \\\\subset V$ be a polytope and $\\\\xi \\\\in V_{\\\\mathbb{C}}^*$. We\\nobtain an expression for $I(\\\\mathfrak{p}; \\\\alpha) := \\\\int_{\\\\mathfrak{p}}\\ne^{\\\\langle \\\\alpha, x \\\\rangle} dx$ as a sum of meromorphic functions in $\\\\alpha\\n\\\\in V^*_{\\\\mathbb{C}}$ parametrized by the faces $\\\\mathfrak{f}$ of\\n$\\\\mathfrak{p}$ on which $\\\\langle \\\\xi, x \\\\rangle$ is constant. Each term only\\ndepends on the local geometry of $\\\\mathfrak{p}$ near $\\\\mathfrak{f}$ (and on\\n$\\\\xi$) and is holomorphic at $\\\\alpha = \\\\xi$. When $\\\\langle \\\\xi, \\\\cdot \\\\rangle$\\nis only constant on the vertices of $\\\\mathfrak{p}$ our formula reduces to\\nBrion's formula. Suppose $\\\\mathfrak{p}$ is a rational polytope with respect to a lattice\\n$\\\\Lambda$. We obtain an expression for $S(\\\\mathfrak{p}; \\\\alpha) :=\\n\\\\sum_{\\\\lambda \\\\in \\\\mathfrak{p} \\\\cap \\\\Lambda} e^{\\\\langle \\\\alpha, \\\\lambda\\n\\\\rangle}$ as a sum of meromorphic functions parametrized by the faces\\n$\\\\mathfrak{f}$ on which $e^{\\\\langle \\\\xi, x \\\\rangle} = 1$ on a finite index\\nsublattice of $\\\\text{lin}(\\\\mathfrak{f}) \\\\cap \\\\Lambda$. Each term only depends\\non the local geometry of $\\\\mathfrak{p}$ near $\\\\mathfrak{f}$ (and on $\\\\xi$ and\\n$\\\\Lambda$) and is holomorphic at $\\\\alpha = \\\\xi$. When $e^{\\\\langle \\\\xi, \\\\cdot\\n\\\\rangle} \\\\neq 1$ at any non-zero lattice point on a line through the origin\\nparallel to an edge of $\\\\mathfrak{p}$, our formula reduces to Brion's formula,\\nand when $\\\\xi = 0$, it reduces to the Ehrhart quasi-polynomial. Our formulas are particularly useful for understanding how\\n$I(\\\\mathfrak{p}(h); \\\\xi)$ and $S(\\\\mathfrak{p}(h); \\\\xi)$ vary in a family of\\npolytopes $\\\\mathfrak{p}(h)$ with the same normal fan. When considering dilates\\nof a fixed polytope, our formulas may be viewed as polytopal analogues of\\nLaplace's method and the method of stationary phase. Such expressions naturally\\nshow up in analysis on symmetric spaces and affine buildings.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $\mathfrak{p}\子集 V$ 是一个多面体,并且 $\xi 在 V_{\mathbb{C}}^*$ 中。我们可以得到 $I(\mathfrak{p}; \alpha) := int_\\mathfrak{p}}e^{langle \alpha, x \rangle} dx$ 是 $\alpha\in V^*_{mathbb{C}}$ 中以 $\langle \xi, x \rangle$ 上的 $\mathfrak{f}$ 的面为参数的分形函数之和。每个项只取决于$mathfrak{f}$附近(和$\xi$上)的$mathfrak{p}$的局部几何,并且在$\alpha = \xi$处是全态的。当 $\langle \xi, \cdot \rangle$ 只在 $\mathfrak{p}$ 的顶点上是常数时,我们的公式就简化成了布里昂公式。假设 $mathfrak{p}$ 是一个相对于网格$\Lambda$ 的有理多面体。我们可以得到 $S(\mathfrak{p}; \alpha) :=\sum_\lambda \in \mathfrak{p} 的表达式。\e^{langle \alpha, \lambda\rangle}$ 是在 $\text{lin}(\mathfrak{f}) \cap \Lambda$ 的有限索引子网格上,由面 $mathfrak{f}$ 所参数化的求和函数,在这些面上,$e^{langle \xi, x \rangle} = 1$。每个项只取决于 $\mathfrak{p}$ 附近的局部几何(以及 $\xi$ 和 $\Lambda$ ),并且在 $\alpha = \xi$ 时是全态的。当 $e^{langle\xi,\cdot\rangle} 时\在通过原点平行于 $\mathfrak{p}$ 的边的直线上的任意非零晶格点上,我们的公式简化为布里昂公式,当 $\xi = 0$ 时,它简化为埃尔哈特准多项式。我们的公式对于理解$I(\mathfrak{p}(h); \xi)$和$S(\mathfrak{p}(h); \xi)$在具有相同法向扇形的多面体$\mathfrak{p}(h)$家族中如何变化特别有用。当考虑一个固定多面体的扩张时,我们的公式可以看作是拉普拉斯方法和静止阶段方法的多面体类比。这种表达式自然会出现在对称空间和仿射建筑物的分析中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A degenerate version of Brion's formula
Let $\mathfrak{p} \subset V$ be a polytope and $\xi \in V_{\mathbb{C}}^*$. We obtain an expression for $I(\mathfrak{p}; \alpha) := \int_{\mathfrak{p}} e^{\langle \alpha, x \rangle} dx$ as a sum of meromorphic functions in $\alpha \in V^*_{\mathbb{C}}$ parametrized by the faces $\mathfrak{f}$ of $\mathfrak{p}$ on which $\langle \xi, x \rangle$ is constant. Each term only depends on the local geometry of $\mathfrak{p}$ near $\mathfrak{f}$ (and on $\xi$) and is holomorphic at $\alpha = \xi$. When $\langle \xi, \cdot \rangle$ is only constant on the vertices of $\mathfrak{p}$ our formula reduces to Brion's formula. Suppose $\mathfrak{p}$ is a rational polytope with respect to a lattice $\Lambda$. We obtain an expression for $S(\mathfrak{p}; \alpha) := \sum_{\lambda \in \mathfrak{p} \cap \Lambda} e^{\langle \alpha, \lambda \rangle}$ as a sum of meromorphic functions parametrized by the faces $\mathfrak{f}$ on which $e^{\langle \xi, x \rangle} = 1$ on a finite index sublattice of $\text{lin}(\mathfrak{f}) \cap \Lambda$. Each term only depends on the local geometry of $\mathfrak{p}$ near $\mathfrak{f}$ (and on $\xi$ and $\Lambda$) and is holomorphic at $\alpha = \xi$. When $e^{\langle \xi, \cdot \rangle} \neq 1$ at any non-zero lattice point on a line through the origin parallel to an edge of $\mathfrak{p}$, our formula reduces to Brion's formula, and when $\xi = 0$, it reduces to the Ehrhart quasi-polynomial. Our formulas are particularly useful for understanding how $I(\mathfrak{p}(h); \xi)$ and $S(\mathfrak{p}(h); \xi)$ vary in a family of polytopes $\mathfrak{p}(h)$ with the same normal fan. When considering dilates of a fixed polytope, our formulas may be viewed as polytopal analogues of Laplace's method and the method of stationary phase. Such expressions naturally show up in analysis on symmetric spaces and affine buildings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信