路径和簇的广义图兰问题

Xiaona Fang, Xiutao Zhu, Yaojun Chen
{"title":"路径和簇的广义图兰问题","authors":"Xiaona Fang, Xiutao Zhu, Yaojun Chen","doi":"arxiv-2409.10129","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{H}$ be a family of graphs. The generalized Tur\\'an number\n$ex(n, K_r, \\mathcal{H})$ is the maximum number of copies of the clique $K_r$\nin any $n$-vertex $\\mathcal{H}$-free graph. In this paper, we determine the\nvalue of $ex(n, K_r, \\{P_k, K_m \\} )$ for sufficiently large $n$ with an\nexceptional case, and characterize all corresponding extremal graphs, which\ngeneralizes and strengthens the results of Katona and Xiao [EJC, 2024] on\n$ex(n, K_2, \\{P_k, K_m \\} )$. For the exceptional case, we obtain a tight upper\nbound for $ex(n, K_r, \\{P_k, K_m \\} )$ that confirms a conjecture on $ex(n,\nK_2, \\{P_k, K_m \\} )$ posed by Katona and Xiao.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Turán problem for a path and a clique\",\"authors\":\"Xiaona Fang, Xiutao Zhu, Yaojun Chen\",\"doi\":\"arxiv-2409.10129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{H}$ be a family of graphs. The generalized Tur\\\\'an number\\n$ex(n, K_r, \\\\mathcal{H})$ is the maximum number of copies of the clique $K_r$\\nin any $n$-vertex $\\\\mathcal{H}$-free graph. In this paper, we determine the\\nvalue of $ex(n, K_r, \\\\{P_k, K_m \\\\} )$ for sufficiently large $n$ with an\\nexceptional case, and characterize all corresponding extremal graphs, which\\ngeneralizes and strengthens the results of Katona and Xiao [EJC, 2024] on\\n$ex(n, K_2, \\\\{P_k, K_m \\\\} )$. For the exceptional case, we obtain a tight upper\\nbound for $ex(n, K_r, \\\\{P_k, K_m \\\\} )$ that confirms a conjecture on $ex(n,\\nK_2, \\\\{P_k, K_m \\\\} )$ posed by Katona and Xiao.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $\mathcal{H}$ 是一个图族。广义 Tur\'an 数$ex(n, K_r, \mathcal{H})$ 是任何 $n$-vertex $\mathcal{H}$ 无顶点图中小集团 $K_r$ 的最大副本数。本文确定了$ex(n, K_r, \{P_k, K_m \} )$ 在足够大的$n$条件下的值,并描述了所有相应极值图的特征,概括并加强了 Katona 和 Xiao [EJC, 2024] 关于$ex(n, K_2, \{P_k, K_m \} )$ 的结果。对于特殊情况,我们得到了$ex(n, K_r, \{P_k, K_m \} )$的严格上限,证实了卡托纳和肖对$ex(n,K_2, \{P_k, K_m \} )$提出的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Turán problem for a path and a clique
Let $\mathcal{H}$ be a family of graphs. The generalized Tur\'an number $ex(n, K_r, \mathcal{H})$ is the maximum number of copies of the clique $K_r$ in any $n$-vertex $\mathcal{H}$-free graph. In this paper, we determine the value of $ex(n, K_r, \{P_k, K_m \} )$ for sufficiently large $n$ with an exceptional case, and characterize all corresponding extremal graphs, which generalizes and strengthens the results of Katona and Xiao [EJC, 2024] on $ex(n, K_2, \{P_k, K_m \} )$. For the exceptional case, we obtain a tight upper bound for $ex(n, K_r, \{P_k, K_m \} )$ that confirms a conjecture on $ex(n, K_2, \{P_k, K_m \} )$ posed by Katona and Xiao.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信