幂级数迭代的显式表达

Beauduin Kei
{"title":"幂级数迭代的显式表达","authors":"Beauduin Kei","doi":"arxiv-2409.09809","DOIUrl":null,"url":null,"abstract":"In this paper, we present five different formulas for both discrete and\nfractional iterations of an invertible power series $f$ utilizing a novel and\nunifying approach from umbral calculus. Established formulas are extended, and\ntheir proofs simplified, while new formulas are introduced. In particular,\nthrough the use of $q$-calculus identities, we eliminate the requirement for\n$f'(0)$ to equal $1$ and, consequently, the corresponding new expressions for\nthe iterative logarithm are derived.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit Expressions for Iterates of Power Series\",\"authors\":\"Beauduin Kei\",\"doi\":\"arxiv-2409.09809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present five different formulas for both discrete and\\nfractional iterations of an invertible power series $f$ utilizing a novel and\\nunifying approach from umbral calculus. Established formulas are extended, and\\ntheir proofs simplified, while new formulas are introduced. In particular,\\nthrough the use of $q$-calculus identities, we eliminate the requirement for\\n$f'(0)$ to equal $1$ and, consequently, the corresponding new expressions for\\nthe iterative logarithm are derived.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用脐带微积分的一种新颖而统一的方法,提出了离散幂级数 $f$ 和分数幂级数 $f$ 的五种不同的迭代公式。本文扩展了已有公式,简化了其证明,同时引入了新公式。特别是,通过使用 $q$ 微积分等式,我们消除了$f'(0)$ 必须等于 $1$的要求,从而得出了迭代对数的相应新表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit Expressions for Iterates of Power Series
In this paper, we present five different formulas for both discrete and fractional iterations of an invertible power series $f$ utilizing a novel and unifying approach from umbral calculus. Established formulas are extended, and their proofs simplified, while new formulas are introduced. In particular, through the use of $q$-calculus identities, we eliminate the requirement for $f'(0)$ to equal $1$ and, consequently, the corresponding new expressions for the iterative logarithm are derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信