具有小近似谱规范的布尔函数

Tsun-Ming Cheung, Hamed Hatami, Rosie Zhao, Itai Zilberstein
{"title":"具有小近似谱规范的布尔函数","authors":"Tsun-Ming Cheung, Hamed Hatami, Rosie Zhao, Itai Zilberstein","doi":"arxiv-2409.10634","DOIUrl":null,"url":null,"abstract":"The sum of the absolute values of the Fourier coefficients of a function\n$f:\\mathbb{F}_2^n \\to \\mathbb{R}$ is called the spectral norm of $f$. Green and\nSanders' quantitative version of Cohen's idempotent theorem states that if the\nspectral norm of $f:\\mathbb{F}_2^n \\to \\{0,1\\}$ is at most $M$, then the\nsupport of $f$ belongs to the ring of sets generated by at most $\\ell(M)$\ncosets, where $\\ell(M)$ is a constant that only depends on $M$. We prove that the above statement can be generalized to \\emph{approximate}\nspectral norms if and only if the support of $f$ and its complement satisfy a\ncertain arithmetic connectivity condition. In particular, our theorem provides\na new proof of the quantitative Cohen's theorem for $\\mathbb{F}_2^n$.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boolean Functions with Small Approximate Spectral Norm\",\"authors\":\"Tsun-Ming Cheung, Hamed Hatami, Rosie Zhao, Itai Zilberstein\",\"doi\":\"arxiv-2409.10634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sum of the absolute values of the Fourier coefficients of a function\\n$f:\\\\mathbb{F}_2^n \\\\to \\\\mathbb{R}$ is called the spectral norm of $f$. Green and\\nSanders' quantitative version of Cohen's idempotent theorem states that if the\\nspectral norm of $f:\\\\mathbb{F}_2^n \\\\to \\\\{0,1\\\\}$ is at most $M$, then the\\nsupport of $f$ belongs to the ring of sets generated by at most $\\\\ell(M)$\\ncosets, where $\\\\ell(M)$ is a constant that only depends on $M$. We prove that the above statement can be generalized to \\\\emph{approximate}\\nspectral norms if and only if the support of $f$ and its complement satisfy a\\ncertain arithmetic connectivity condition. In particular, our theorem provides\\na new proof of the quantitative Cohen's theorem for $\\\\mathbb{F}_2^n$.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

函数$f:\mathbb{F}_2^n \to \mathbb{R}$的傅里叶系数绝对值之和称为$f$的谱规范。格林和桑德斯的科恩等价定理的定量版本指出,如果$f:\mathbb{F}_2^n \to \{0,1\}$的谱规范至多为$M$,那么$f$的支持属于至多由$\ell(M)$余集生成的集合环,其中$\ell(M)$是一个只取决于$M$的常数。我们证明,当且仅当 $f$ 的支持及其补集满足一定的算术连通性条件时,上述声明可以推广到 \emph{approximate}spectral norms。特别是,我们的定理为 $\mathbb{F}_2^n$ 的定量科恩定理提供了新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boolean Functions with Small Approximate Spectral Norm
The sum of the absolute values of the Fourier coefficients of a function $f:\mathbb{F}_2^n \to \mathbb{R}$ is called the spectral norm of $f$. Green and Sanders' quantitative version of Cohen's idempotent theorem states that if the spectral norm of $f:\mathbb{F}_2^n \to \{0,1\}$ is at most $M$, then the support of $f$ belongs to the ring of sets generated by at most $\ell(M)$ cosets, where $\ell(M)$ is a constant that only depends on $M$. We prove that the above statement can be generalized to \emph{approximate} spectral norms if and only if the support of $f$ and its complement satisfy a certain arithmetic connectivity condition. In particular, our theorem provides a new proof of the quantitative Cohen's theorem for $\mathbb{F}_2^n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信