光谱半径约束下的几乎规则子图

Weilun Xu, Guorong Gao, An Chang
{"title":"光谱半径约束下的几乎规则子图","authors":"Weilun Xu, Guorong Gao, An Chang","doi":"arxiv-2409.10853","DOIUrl":null,"url":null,"abstract":"A graph is called $K$-almost regular if its maximum degree is at most $K$\ntimes the minimum degree. Erd\\H{o}s and Simonovits showed that for a constant\n$0< \\varepsilon< 1$ and a sufficiently large integer $n$, any $n$-vertex graph\nwith more than $n^{1+\\varepsilon}$ edges has a $K$-almost regular subgraph with\n$n'\\geq n^{\\varepsilon\\frac{1-\\varepsilon}{1+\\varepsilon}}$ vertices and at\nleast $\\frac{2}{5}n'^{1+\\varepsilon}$ edges. An interesting and natural problem\nis whether there exits the spectral counterpart to Erd\\H{o}s and Simonovits's\nresult. In this paper, we will completely settle this issue. More precisely, we\nverify that for constants $\\frac{1}{2}<\\varepsilon\\leq 1$ and $c>0$, if the\nspectral radius of an $n$-vertex graph $G$ is at least $cn^{\\varepsilon}$, then\n$G$ has a $K$-almost regular subgraph of order $n'\\geq\nn^{\\frac{2\\varepsilon^2-\\varepsilon}{24}}$ with at least $\nc'n'^{1+\\varepsilon}$ edges, where $c'$ and $K$ are constants depending on $c$\nand $\\varepsilon$. Moreover, for $0<\\varepsilon\\leq\\frac{1}{2}$, there exist\n$n$-vertex graphs with spectral radius at least $cn^{\\varepsilon}$ that do not\ncontain such an almost regular subgraph. Our result has a wide range of\napplications in spectral Tur\\'{a}n-type problems. Specifically, let\n$ex(n,\\mathcal{H})$ and $spex(n,\\mathcal{H})$ denote, respectively, the maximum\nnumber of edges and the maximum spectral radius among all $n$-vertex\n$\\mathcal{H}$-free graphs. We show that for $1\\geq\\xi > \\frac{1}{2}$,\n$ex(n,\\mathcal{H}) = O(n^{1+\\xi})$ if and only if $spex(n,\\mathcal{H}) =\nO(n^\\xi)$.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost regular subgraphs under spectral radius constrains\",\"authors\":\"Weilun Xu, Guorong Gao, An Chang\",\"doi\":\"arxiv-2409.10853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A graph is called $K$-almost regular if its maximum degree is at most $K$\\ntimes the minimum degree. Erd\\\\H{o}s and Simonovits showed that for a constant\\n$0< \\\\varepsilon< 1$ and a sufficiently large integer $n$, any $n$-vertex graph\\nwith more than $n^{1+\\\\varepsilon}$ edges has a $K$-almost regular subgraph with\\n$n'\\\\geq n^{\\\\varepsilon\\\\frac{1-\\\\varepsilon}{1+\\\\varepsilon}}$ vertices and at\\nleast $\\\\frac{2}{5}n'^{1+\\\\varepsilon}$ edges. An interesting and natural problem\\nis whether there exits the spectral counterpart to Erd\\\\H{o}s and Simonovits's\\nresult. In this paper, we will completely settle this issue. More precisely, we\\nverify that for constants $\\\\frac{1}{2}<\\\\varepsilon\\\\leq 1$ and $c>0$, if the\\nspectral radius of an $n$-vertex graph $G$ is at least $cn^{\\\\varepsilon}$, then\\n$G$ has a $K$-almost regular subgraph of order $n'\\\\geq\\nn^{\\\\frac{2\\\\varepsilon^2-\\\\varepsilon}{24}}$ with at least $\\nc'n'^{1+\\\\varepsilon}$ edges, where $c'$ and $K$ are constants depending on $c$\\nand $\\\\varepsilon$. Moreover, for $0<\\\\varepsilon\\\\leq\\\\frac{1}{2}$, there exist\\n$n$-vertex graphs with spectral radius at least $cn^{\\\\varepsilon}$ that do not\\ncontain such an almost regular subgraph. Our result has a wide range of\\napplications in spectral Tur\\\\'{a}n-type problems. Specifically, let\\n$ex(n,\\\\mathcal{H})$ and $spex(n,\\\\mathcal{H})$ denote, respectively, the maximum\\nnumber of edges and the maximum spectral radius among all $n$-vertex\\n$\\\\mathcal{H}$-free graphs. We show that for $1\\\\geq\\\\xi > \\\\frac{1}{2}$,\\n$ex(n,\\\\mathcal{H}) = O(n^{1+\\\\xi})$ if and only if $spex(n,\\\\mathcal{H}) =\\nO(n^\\\\xi)$.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果一个图的最大度数最多是最小度数的 $K$ 倍,那么这个图就被称为 $K$-almost regular。Erd\H{o}s 和 Simonovits 证明,对于常数$0< \varepsilon< 1$和足够大的整数 $n$、任何具有超过 $n^{1+\varepsilon}$ 边的 $n$ 顶点图都有一个 $K$ 几乎规则的子图,该子图具有 $n'\geq n^\{varepsilon\frac{1-\varepsilon}{1+\varepsilon}}$ 顶点和至少 $\frac{2}{5}n'^{1+\varepsilon}$ 边。一个有趣而自然的问题是,是否存在与 Erd\H{o}s 和 Simonovits 的结果相对应的谱。本文将彻底解决这个问题。更准确地说,我们将证明,对于常数 $\frac{1}{2}0$,如果一个 $n$ 顶点图 $G$ 的谱半径至少为 $cn^\{varepsilon}$、那么$G$有一个阶为$n'\geqn^{frac{2\varepsilon^2-\varepsilon}{24}}$的$K$-几乎规则的子图,至少有$c'n'^{1+\varepsilon}$边,其中$c'$和$K$是取决于$c$和$\varepsilon$的常数。此外,对于 $0 \frac{1}{2}$,当且仅当 $spex(n,\mathcal{H}) =O(n^{1+\xi})$时,$ex(n,\mathcal{H}) =O(n^\xi)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost regular subgraphs under spectral radius constrains
A graph is called $K$-almost regular if its maximum degree is at most $K$ times the minimum degree. Erd\H{o}s and Simonovits showed that for a constant $0< \varepsilon< 1$ and a sufficiently large integer $n$, any $n$-vertex graph with more than $n^{1+\varepsilon}$ edges has a $K$-almost regular subgraph with $n'\geq n^{\varepsilon\frac{1-\varepsilon}{1+\varepsilon}}$ vertices and at least $\frac{2}{5}n'^{1+\varepsilon}$ edges. An interesting and natural problem is whether there exits the spectral counterpart to Erd\H{o}s and Simonovits's result. In this paper, we will completely settle this issue. More precisely, we verify that for constants $\frac{1}{2}<\varepsilon\leq 1$ and $c>0$, if the spectral radius of an $n$-vertex graph $G$ is at least $cn^{\varepsilon}$, then $G$ has a $K$-almost regular subgraph of order $n'\geq n^{\frac{2\varepsilon^2-\varepsilon}{24}}$ with at least $ c'n'^{1+\varepsilon}$ edges, where $c'$ and $K$ are constants depending on $c$ and $\varepsilon$. Moreover, for $0<\varepsilon\leq\frac{1}{2}$, there exist $n$-vertex graphs with spectral radius at least $cn^{\varepsilon}$ that do not contain such an almost regular subgraph. Our result has a wide range of applications in spectral Tur\'{a}n-type problems. Specifically, let $ex(n,\mathcal{H})$ and $spex(n,\mathcal{H})$ denote, respectively, the maximum number of edges and the maximum spectral radius among all $n$-vertex $\mathcal{H}$-free graphs. We show that for $1\geq\xi > \frac{1}{2}$, $ex(n,\mathcal{H}) = O(n^{1+\xi})$ if and only if $spex(n,\mathcal{H}) = O(n^\xi)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信