具有边局部覆盖条件的稀疏图

Debsoumya Chakraborti, Amirali Madani, Anil Maheshwari, Babak Miraftab
{"title":"具有边局部覆盖条件的稀疏图","authors":"Debsoumya Chakraborti, Amirali Madani, Anil Maheshwari, Babak Miraftab","doi":"arxiv-2409.11216","DOIUrl":null,"url":null,"abstract":"In 1988, Erd\\H{o}s suggested the question of minimizing the number of edges\nin a connected $n$-vertex graph where every edge is contained in a triangle.\nShortly after, Catlin, Grossman, Hobbs, and Lai resolved this in a stronger\nform. In this paper, we study a natural generalization of the question of\nErd\\H{o}s in which we replace `triangle' with `clique of order $k$' for ${k\\ge\n3}$. We completely resolve this generalized question with the characterization\nof all extremal graphs. Motivated by applications in data science, we also\nstudy another generalization of the question of Erd\\H{o}s where every edge is\nrequired to be in at least $\\ell$ triangles for $\\ell\\ge 2$ instead of only one\ntriangle. We completely resolve this problem for $\\ell = 2$.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse graphs with local covering conditions on edges\",\"authors\":\"Debsoumya Chakraborti, Amirali Madani, Anil Maheshwari, Babak Miraftab\",\"doi\":\"arxiv-2409.11216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1988, Erd\\\\H{o}s suggested the question of minimizing the number of edges\\nin a connected $n$-vertex graph where every edge is contained in a triangle.\\nShortly after, Catlin, Grossman, Hobbs, and Lai resolved this in a stronger\\nform. In this paper, we study a natural generalization of the question of\\nErd\\\\H{o}s in which we replace `triangle' with `clique of order $k$' for ${k\\\\ge\\n3}$. We completely resolve this generalized question with the characterization\\nof all extremal graphs. Motivated by applications in data science, we also\\nstudy another generalization of the question of Erd\\\\H{o}s where every edge is\\nrequired to be in at least $\\\\ell$ triangles for $\\\\ell\\\\ge 2$ instead of only one\\ntriangle. We completely resolve this problem for $\\\\ell = 2$.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1988 年,埃尔德{H{o}斯提出了这样一个问题:在一个连通的 $n$ 顶点图中,每条边都包含在一个三角形中,如何最小化图中的边数?在本文中,我们研究了埃尔德{H{o}s}问题的自然广义化,其中我们将 "三角形 "替换为${k\ge3}$的 "阶$k$的clique"。我们用所有极值图的特征描述彻底解决了这个广义问题。受数据科学应用的启发,我们还研究了 Erd\H{o}s 问题的另一个广义问题,即对于 $\ell\ge 2$,要求每条边至少在 $\ell$ 三角形中,而不是只有一个三角形。我们完全解决了 $\ell = 2$ 的这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse graphs with local covering conditions on edges
In 1988, Erd\H{o}s suggested the question of minimizing the number of edges in a connected $n$-vertex graph where every edge is contained in a triangle. Shortly after, Catlin, Grossman, Hobbs, and Lai resolved this in a stronger form. In this paper, we study a natural generalization of the question of Erd\H{o}s in which we replace `triangle' with `clique of order $k$' for ${k\ge 3}$. We completely resolve this generalized question with the characterization of all extremal graphs. Motivated by applications in data science, we also study another generalization of the question of Erd\H{o}s where every edge is required to be in at least $\ell$ triangles for $\ell\ge 2$ instead of only one triangle. We completely resolve this problem for $\ell = 2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信