三元富词的重复阈值

James D. Currie, Lucas Mol, Jarkko Peltomäki
{"title":"三元富词的重复阈值","authors":"James D. Currie, Lucas Mol, Jarkko Peltomäki","doi":"arxiv-2409.12068","DOIUrl":null,"url":null,"abstract":"In 2014, Vesti proposed the problem of determining the repetition threshold\nfor infinite rich words, i.e., for infinite words in which all factors of\nlength $n$ contain $n$ distinct nonempty palindromic factors. In 2020, Currie,\nMol, and Rampersad proved a conjecture of Baranwal and Shallit that the\nrepetition threshold for binary rich words is $2 + \\sqrt{2}/2$. In this paper,\nwe prove a structure theorem for $16/7$-power-free ternary rich words. Using\nthe structure theorem, we deduce that the repetition threshold for ternary rich\nwords is $1 + 1/(3 - \\mu) \\approx 2.25876324$, where $\\mu$ is the unique real\nroot of the polynomial $x^3 - 2x^2 - 1$.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The repetition threshold for ternary rich words\",\"authors\":\"James D. Currie, Lucas Mol, Jarkko Peltomäki\",\"doi\":\"arxiv-2409.12068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2014, Vesti proposed the problem of determining the repetition threshold\\nfor infinite rich words, i.e., for infinite words in which all factors of\\nlength $n$ contain $n$ distinct nonempty palindromic factors. In 2020, Currie,\\nMol, and Rampersad proved a conjecture of Baranwal and Shallit that the\\nrepetition threshold for binary rich words is $2 + \\\\sqrt{2}/2$. In this paper,\\nwe prove a structure theorem for $16/7$-power-free ternary rich words. Using\\nthe structure theorem, we deduce that the repetition threshold for ternary rich\\nwords is $1 + 1/(3 - \\\\mu) \\\\approx 2.25876324$, where $\\\\mu$ is the unique real\\nroot of the polynomial $x^3 - 2x^2 - 1$.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2014 年,维斯提提出了确定无限富词重复阈值的问题,即长度为 $n$ 的所有因子都包含 $n$ 不同的非空 palindromic 因子的无限词的重复阈值。2020 年,Currie、Mol 和 Rampersad 证明了 Baranwal 和 Shallit 的猜想,即二进制富词的重复阈值为 2 + \sqrt{2}/2$ 。在本文中,我们证明了 16/7$ 无幂次三元富词的结构定理。利用结构定理,我们推导出三元富词的重复阈值是 $1 + 1/(3 - \mu) \approx 2.25876324$,其中 $\mu$ 是多项式 $x^3 - 2x^2 - 1$ 的唯一实根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The repetition threshold for ternary rich words
In 2014, Vesti proposed the problem of determining the repetition threshold for infinite rich words, i.e., for infinite words in which all factors of length $n$ contain $n$ distinct nonempty palindromic factors. In 2020, Currie, Mol, and Rampersad proved a conjecture of Baranwal and Shallit that the repetition threshold for binary rich words is $2 + \sqrt{2}/2$. In this paper, we prove a structure theorem for $16/7$-power-free ternary rich words. Using the structure theorem, we deduce that the repetition threshold for ternary rich words is $1 + 1/(3 - \mu) \approx 2.25876324$, where $\mu$ is the unique real root of the polynomial $x^3 - 2x^2 - 1$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信