图多胞猜想的证明

Feihu Liu
{"title":"图多胞猜想的证明","authors":"Feihu Liu","doi":"arxiv-2409.11970","DOIUrl":null,"url":null,"abstract":"The graph polytopes arising from the vertex weighted graph, which was first\nintroduced and studied by B\\'ona, Ju, and Yoshida. A conjecture states that for\na simple connected graph, the polynomial in the numerator of the Ehrhart series\nis palindromic. We confirm the conjecture. Furthermore, we introduce the\nhypergraph polytope. We prove that the simple connected unimodular hypergraph\npolytopes are integer polytopes. We also prove the polynomial in the numerator\nof the Ehrhart series of simple connected uniform hypergraph polytopes is\npalindromic.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of a conjecture on graph polytope\",\"authors\":\"Feihu Liu\",\"doi\":\"arxiv-2409.11970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The graph polytopes arising from the vertex weighted graph, which was first\\nintroduced and studied by B\\\\'ona, Ju, and Yoshida. A conjecture states that for\\na simple connected graph, the polynomial in the numerator of the Ehrhart series\\nis palindromic. We confirm the conjecture. Furthermore, we introduce the\\nhypergraph polytope. We prove that the simple connected unimodular hypergraph\\npolytopes are integer polytopes. We also prove the polynomial in the numerator\\nof the Ehrhart series of simple connected uniform hypergraph polytopes is\\npalindromic.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

顶点加权图是由 B\'ona, Ju 和 Yoshida 首次提出和研究的。有一个猜想指出,对于简单相连的图,埃尔哈特数列分子中的多项式是回折的。我们证实了这一猜想。此外,我们还引入了超图多面体。我们证明了简单连接的单模态超图多面体是整数多面体。我们还证明了简单连通均匀超图多面体的埃尔哈特数列分子中的多项式是回折的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof of a conjecture on graph polytope
The graph polytopes arising from the vertex weighted graph, which was first introduced and studied by B\'ona, Ju, and Yoshida. A conjecture states that for a simple connected graph, the polynomial in the numerator of the Ehrhart series is palindromic. We confirm the conjecture. Furthermore, we introduce the hypergraph polytope. We prove that the simple connected unimodular hypergraph polytopes are integer polytopes. We also prove the polynomial in the numerator of the Ehrhart series of simple connected uniform hypergraph polytopes is palindromic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信