超图关联hedra 和点的模空间紧凑化

Jasper Bown, Javier González-Anaya
{"title":"超图关联hedra 和点的模空间紧凑化","authors":"Jasper Bown, Javier González-Anaya","doi":"arxiv-2409.08611","DOIUrl":null,"url":null,"abstract":"We prove that every Hassett compactification of the moduli space of weighted\nstable rational curves that admits both a reduction map from the Losev-Manin\ncompactification and a reduction map to projective space is a toric variety,\nwhose corresponding polytope is a hypergraph associahedron (also known as a\nnestohedron). In addition, we present an analogous result for the moduli space\nof labeled weighted points in affine space up to translation and scaling. These\nresults are interconnected, and we make their relationship explicit through the\nconcept of ``inflation\" of a hypergraph associahedron.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypergraph associahedra and compactifications of moduli spaces of points\",\"authors\":\"Jasper Bown, Javier González-Anaya\",\"doi\":\"arxiv-2409.08611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that every Hassett compactification of the moduli space of weighted\\nstable rational curves that admits both a reduction map from the Losev-Manin\\ncompactification and a reduction map to projective space is a toric variety,\\nwhose corresponding polytope is a hypergraph associahedron (also known as a\\nnestohedron). In addition, we present an analogous result for the moduli space\\nof labeled weighted points in affine space up to translation and scaling. These\\nresults are interconnected, and we make their relationship explicit through the\\nconcept of ``inflation\\\" of a hypergraph associahedron.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,加权稳定有理曲线模空间的每一个哈塞特紧凑化,都同时容许从洛塞夫-马宁紧凑化的还原映射和到投影空间的还原映射,是一个环状变种,其相应的多面体是一个超图关联正面体(又称anestohedron)。此外,我们还提出了仿射空间中标注加权点的模空间在平移和缩放时的类似结果。这些结果是相互关联的,我们通过超图联立面的 "膨胀 "概念来明确它们之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypergraph associahedra and compactifications of moduli spaces of points
We prove that every Hassett compactification of the moduli space of weighted stable rational curves that admits both a reduction map from the Losev-Manin compactification and a reduction map to projective space is a toric variety, whose corresponding polytope is a hypergraph associahedron (also known as a nestohedron). In addition, we present an analogous result for the moduli space of labeled weighted points in affine space up to translation and scaling. These results are interconnected, and we make their relationship explicit through the concept of ``inflation" of a hypergraph associahedron.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信