{"title":"Taxanorm:微生物组数据的新型特定分类归一化方法","authors":"Ziyue Wang, Dillon Lloyd, Shanshan Zhao, Alison Motsinger-Reif","doi":"10.1186/s12859-024-05918-z","DOIUrl":null,"url":null,"abstract":"In high-throughput sequencing studies, sequencing depth, which quantifies the total number of reads, varies across samples. Unequal sequencing depth can obscure true biological signals of interest and prevent direct comparisons between samples. To remove variability due to differential sequencing depth, taxa counts are usually normalized before downstream analysis. However, most existing normalization methods scale counts using size factors that are sample specific but not taxa specific, which can result in over- or under-correction for some taxa. We developed TaxaNorm, a novel normalization method based on a zero-inflated negative binomial model. This method assumes the effects of sequencing depth on mean and dispersion vary across taxa. Incorporating the zero-inflation part can better capture the nature of microbiome data. We also propose two corresponding diagnosis tests on the varying sequencing depth effect for validation. We find that TaxaNorm achieves comparable performance to existing methods in most simulation scenarios in downstream analysis and reaches a higher power for some cases. Specifically, it balances power and false discovery control well. When applying the method in a real dataset, TaxaNorm has improved performance when correcting technical bias. TaxaNorm both sample- and taxon- specific bias by introducing an appropriate regression framework in the microbiome data, which aids in data interpretation and visualization. The ‘TaxaNorm’ R package is freely available through the CRAN repository https://CRAN.R-project.org/package=TaxaNorm and the source code can be downloaded at https://github.com/wangziyue57/TaxaNorm .","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"15 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taxanorm: a novel taxa-specific normalization approach for microbiome data\",\"authors\":\"Ziyue Wang, Dillon Lloyd, Shanshan Zhao, Alison Motsinger-Reif\",\"doi\":\"10.1186/s12859-024-05918-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In high-throughput sequencing studies, sequencing depth, which quantifies the total number of reads, varies across samples. Unequal sequencing depth can obscure true biological signals of interest and prevent direct comparisons between samples. To remove variability due to differential sequencing depth, taxa counts are usually normalized before downstream analysis. However, most existing normalization methods scale counts using size factors that are sample specific but not taxa specific, which can result in over- or under-correction for some taxa. We developed TaxaNorm, a novel normalization method based on a zero-inflated negative binomial model. This method assumes the effects of sequencing depth on mean and dispersion vary across taxa. Incorporating the zero-inflation part can better capture the nature of microbiome data. We also propose two corresponding diagnosis tests on the varying sequencing depth effect for validation. We find that TaxaNorm achieves comparable performance to existing methods in most simulation scenarios in downstream analysis and reaches a higher power for some cases. Specifically, it balances power and false discovery control well. When applying the method in a real dataset, TaxaNorm has improved performance when correcting technical bias. TaxaNorm both sample- and taxon- specific bias by introducing an appropriate regression framework in the microbiome data, which aids in data interpretation and visualization. The ‘TaxaNorm’ R package is freely available through the CRAN repository https://CRAN.R-project.org/package=TaxaNorm and the source code can be downloaded at https://github.com/wangziyue57/TaxaNorm .\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-05918-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05918-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Taxanorm: a novel taxa-specific normalization approach for microbiome data
In high-throughput sequencing studies, sequencing depth, which quantifies the total number of reads, varies across samples. Unequal sequencing depth can obscure true biological signals of interest and prevent direct comparisons between samples. To remove variability due to differential sequencing depth, taxa counts are usually normalized before downstream analysis. However, most existing normalization methods scale counts using size factors that are sample specific but not taxa specific, which can result in over- or under-correction for some taxa. We developed TaxaNorm, a novel normalization method based on a zero-inflated negative binomial model. This method assumes the effects of sequencing depth on mean and dispersion vary across taxa. Incorporating the zero-inflation part can better capture the nature of microbiome data. We also propose two corresponding diagnosis tests on the varying sequencing depth effect for validation. We find that TaxaNorm achieves comparable performance to existing methods in most simulation scenarios in downstream analysis and reaches a higher power for some cases. Specifically, it balances power and false discovery control well. When applying the method in a real dataset, TaxaNorm has improved performance when correcting technical bias. TaxaNorm both sample- and taxon- specific bias by introducing an appropriate regression framework in the microbiome data, which aids in data interpretation and visualization. The ‘TaxaNorm’ R package is freely available through the CRAN repository https://CRAN.R-project.org/package=TaxaNorm and the source code can be downloaded at https://github.com/wangziyue57/TaxaNorm .
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.