{"title":"受速度限制的机器人群在含有障碍物的梯形虚拟管内的分布式控制","authors":"Yan Gao;Chenggang Bai;Quan Quan","doi":"10.1109/TCNS.2024.3463472","DOIUrl":null,"url":null,"abstract":"In our previous work, we design a trapezoid virtual tube to guide robotic swarms through narrow openings. This article extends the application of the trapezoid virtual tube to the situations where there are static obstacles inside and robots have strict speed constraints. We first propose a distributed swarm controller for the trapezoid virtual tube without obstacles and present the relationship between the trapezoid virtual tube and speed constraints. Then, a switching logic for obstacle avoidance is proposed by dividing the trapezoid virtual tube containing static obstacles into several subtrapezoid virtual tubes without obstacles. Formal analyses and proofs are presented to demonstrate that all robots can pass through the trapezoid virtual tube safely. Besides, we validate the effectiveness of our method through numerical simulations and real experiments.","PeriodicalId":56023,"journal":{"name":"IEEE Transactions on Control of Network Systems","volume":"12 1","pages":"287-299"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Control Within a Trapezoid Virtual Tube Containing Obstacles for Robotic Swarms Subject to Speed Constraints\",\"authors\":\"Yan Gao;Chenggang Bai;Quan Quan\",\"doi\":\"10.1109/TCNS.2024.3463472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our previous work, we design a trapezoid virtual tube to guide robotic swarms through narrow openings. This article extends the application of the trapezoid virtual tube to the situations where there are static obstacles inside and robots have strict speed constraints. We first propose a distributed swarm controller for the trapezoid virtual tube without obstacles and present the relationship between the trapezoid virtual tube and speed constraints. Then, a switching logic for obstacle avoidance is proposed by dividing the trapezoid virtual tube containing static obstacles into several subtrapezoid virtual tubes without obstacles. Formal analyses and proofs are presented to demonstrate that all robots can pass through the trapezoid virtual tube safely. Besides, we validate the effectiveness of our method through numerical simulations and real experiments.\",\"PeriodicalId\":56023,\"journal\":{\"name\":\"IEEE Transactions on Control of Network Systems\",\"volume\":\"12 1\",\"pages\":\"287-299\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control of Network Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10683981/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control of Network Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10683981/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Distributed Control Within a Trapezoid Virtual Tube Containing Obstacles for Robotic Swarms Subject to Speed Constraints
In our previous work, we design a trapezoid virtual tube to guide robotic swarms through narrow openings. This article extends the application of the trapezoid virtual tube to the situations where there are static obstacles inside and robots have strict speed constraints. We first propose a distributed swarm controller for the trapezoid virtual tube without obstacles and present the relationship between the trapezoid virtual tube and speed constraints. Then, a switching logic for obstacle avoidance is proposed by dividing the trapezoid virtual tube containing static obstacles into several subtrapezoid virtual tubes without obstacles. Formal analyses and proofs are presented to demonstrate that all robots can pass through the trapezoid virtual tube safely. Besides, we validate the effectiveness of our method through numerical simulations and real experiments.
期刊介绍:
The IEEE Transactions on Control of Network Systems is committed to the timely publication of high-impact papers at the intersection of control systems and network science. In particular, the journal addresses research on the analysis, design and implementation of networked control systems, as well as control over networks. Relevant work includes the full spectrum from basic research on control systems to the design of engineering solutions for automatic control of, and over, networks. The topics covered by this journal include: Coordinated control and estimation over networks, Control and computation over sensor networks, Control under communication constraints, Control and performance analysis issues that arise in the dynamics of networks used in application areas such as communications, computers, transportation, manufacturing, Web ranking and aggregation, social networks, biology, power systems, economics, Synchronization of activities across a controlled network, Stability analysis of controlled networks, Analysis of networks as hybrid dynamical systems.