关于克莱特曼一个结果的推广

Ryan R. Martin, Balázs Patkós
{"title":"关于克莱特曼一个结果的推广","authors":"Ryan R. Martin, Balázs Patkós","doi":"arxiv-2409.08694","DOIUrl":null,"url":null,"abstract":"A classical result of Kleitman determines the maximum number $f(n,s)$ of\nsubsets in a family $\\mathcal{F}\\subseteq 2^{[n]}$ of sets that do not contain\ndistinct sets $F_1,F_2,\\dots,F_s$ that are pairwise disjoint in the case\n$n\\equiv 0,-1$ (mod $s$). Katona and Nagy determined the maximum size of a\nfamily of subsets of an $n$-element set that does not contain\n$A_1,A_2,\\dots,A_t,B_1,B_2,\\dots,B_t$ with $\\bigcup_{i=1}^t A_i$ and\n$\\bigcup_{i=1}^t B_i$ being disjoint. In this paper, we consider the problem of\nfinding the maximum number $vex(n,K_{s\\times t})$ in a family\n$\\mathcal{F}\\subseteq 2^{[n]}$ without sets\n$F^1_1,\\dots,F^1_t,\\dots,F^s_1,\\dots,F^s_t$ such that\n$G_j=\\bigcup_{i=1}^tF^j_i$ $j=1,2,\\dots,s$ are pairwise disjoint. We determine\nthe asymptotics of $2^n-vex(n,K_{s\\times t})$ if $n\\equiv -1$ (mod $s$) for all\n$t$, and if $n\\equiv 0$ (mod $s$), $t\\ge 3$ and show that in this latter case\nthe asymptotics of the $t=2$ subcase is different from both the $t=1$ and $t\\ge\n3$ subcases.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a generalization of a result of Kleitman\",\"authors\":\"Ryan R. Martin, Balázs Patkós\",\"doi\":\"arxiv-2409.08694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A classical result of Kleitman determines the maximum number $f(n,s)$ of\\nsubsets in a family $\\\\mathcal{F}\\\\subseteq 2^{[n]}$ of sets that do not contain\\ndistinct sets $F_1,F_2,\\\\dots,F_s$ that are pairwise disjoint in the case\\n$n\\\\equiv 0,-1$ (mod $s$). Katona and Nagy determined the maximum size of a\\nfamily of subsets of an $n$-element set that does not contain\\n$A_1,A_2,\\\\dots,A_t,B_1,B_2,\\\\dots,B_t$ with $\\\\bigcup_{i=1}^t A_i$ and\\n$\\\\bigcup_{i=1}^t B_i$ being disjoint. In this paper, we consider the problem of\\nfinding the maximum number $vex(n,K_{s\\\\times t})$ in a family\\n$\\\\mathcal{F}\\\\subseteq 2^{[n]}$ without sets\\n$F^1_1,\\\\dots,F^1_t,\\\\dots,F^s_1,\\\\dots,F^s_t$ such that\\n$G_j=\\\\bigcup_{i=1}^tF^j_i$ $j=1,2,\\\\dots,s$ are pairwise disjoint. We determine\\nthe asymptotics of $2^n-vex(n,K_{s\\\\times t})$ if $n\\\\equiv -1$ (mod $s$) for all\\n$t$, and if $n\\\\equiv 0$ (mod $s$), $t\\\\ge 3$ and show that in this latter case\\nthe asymptotics of the $t=2$ subcase is different from both the $t=1$ and $t\\\\ge\\n3$ subcases.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

克莱特曼的一个经典结果确定了$nequiv 0,-1$(mod $s$)情况下不包含成对不相交的不同集合$F_1,F_2,\dots,F_s$的集合族$mathcal{F}\subseteq 2^{[n]}$中子集的最大数目$f(n,s)$。卡托纳和纳吉确定了$n$元素集合中不包含$A_1,A_2,\dots,A_t,B_1,B_2,\dots,B_t$且$\bigcup_{i=1}^t A_i$ 和$\bigcup_{i=1}^t B_i$ 的子集族的最大大小。在本文中,我们考虑的问题是在一个没有集合$F^1_1的族$mathcal{F}/subseteq 2^{[n]}$ 中求取最大数目$vex(n,K_{s\times t})$、\dots,F^1_t,\dots,F^s_1,\dots,F^s_t$ 这样$G_j=\bigcup_{i=1}^tF^j_i$ $j=1,2,\dots,s$是成对不相交的。如果 $nequiv -1$ (mod $s$)适用于所有$t$,我们将确定$2^n-vex(n,K_{s/times t})$的渐近线;如果 $nequiv 0$ (mod $s$),$t/ge 3$,我们将确定$2^n-vex(n,K_{s/times t})$的渐近线,并证明在后一种情况下,$t=2$子情况的渐近线不同于$t=1$和$t/ge 3$子情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a generalization of a result of Kleitman
A classical result of Kleitman determines the maximum number $f(n,s)$ of subsets in a family $\mathcal{F}\subseteq 2^{[n]}$ of sets that do not contain distinct sets $F_1,F_2,\dots,F_s$ that are pairwise disjoint in the case $n\equiv 0,-1$ (mod $s$). Katona and Nagy determined the maximum size of a family of subsets of an $n$-element set that does not contain $A_1,A_2,\dots,A_t,B_1,B_2,\dots,B_t$ with $\bigcup_{i=1}^t A_i$ and $\bigcup_{i=1}^t B_i$ being disjoint. In this paper, we consider the problem of finding the maximum number $vex(n,K_{s\times t})$ in a family $\mathcal{F}\subseteq 2^{[n]}$ without sets $F^1_1,\dots,F^1_t,\dots,F^s_1,\dots,F^s_t$ such that $G_j=\bigcup_{i=1}^tF^j_i$ $j=1,2,\dots,s$ are pairwise disjoint. We determine the asymptotics of $2^n-vex(n,K_{s\times t})$ if $n\equiv -1$ (mod $s$) for all $t$, and if $n\equiv 0$ (mod $s$), $t\ge 3$ and show that in this latter case the asymptotics of the $t=2$ subcase is different from both the $t=1$ and $t\ge 3$ subcases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信