{"title":"可脱壳 CW 球和球体的面数","authors":"Joshua Hinman","doi":"arxiv-2409.08427","DOIUrl":null,"url":null,"abstract":"Let $\\mathscr{X}$ be the boundary complex of a $(d+1)$-polytope, and let\n$\\rho(d+1,k) = \\frac{1}{2}[{\\lceil (d+1)/2 \\rceil \\choose d-k} + {\\lfloor\n(d+1)/2 \\rfloor \\choose d-k}]$. Recently, the author, answering B\\'ar\\'any's\nquestion from 1998, proved that for all $\\lfloor \\frac{d-1}{2} \\rfloor \\leq k\n\\leq d$, \\[ f_k(\\mathscr{X}) \\geq \\rho(d+1,k)f_d(\\mathscr{X}). \\] We prove a\ngeneralization: if $\\mathscr{X}$ is a shellable, strongly regular CW sphere or\nCW ball of dimension $d$, then for all $\\lfloor \\frac{d-1}{2} \\rfloor \\leq k\n\\leq d$, \\[ f_k(\\mathscr{X}) \\geq \\rho(d+1,k)f_d(\\mathscr{X}) + \\frac{1}{2}f_k(\\partial\n\\mathscr{X}), \\] with equality precisely when $k=d$ or when $k=d-1$ and\n$\\mathscr{X}$ is simplicial. We further prove that if $\\mathscr{S}$ is a\nstrongly regular CW sphere of dimension $d$, and the face poset of\n$\\mathscr{S}$ is both CL-shellable and dual CL-shellable, then\n$f_k(\\mathscr{S}) \\geq \\min\\{f_0(\\mathscr{S}),f_d(\\mathscr{S})\\}$ for all $0\n\\leq k \\leq d$.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Face Numbers of Shellable CW Balls and Spheres\",\"authors\":\"Joshua Hinman\",\"doi\":\"arxiv-2409.08427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathscr{X}$ be the boundary complex of a $(d+1)$-polytope, and let\\n$\\\\rho(d+1,k) = \\\\frac{1}{2}[{\\\\lceil (d+1)/2 \\\\rceil \\\\choose d-k} + {\\\\lfloor\\n(d+1)/2 \\\\rfloor \\\\choose d-k}]$. Recently, the author, answering B\\\\'ar\\\\'any's\\nquestion from 1998, proved that for all $\\\\lfloor \\\\frac{d-1}{2} \\\\rfloor \\\\leq k\\n\\\\leq d$, \\\\[ f_k(\\\\mathscr{X}) \\\\geq \\\\rho(d+1,k)f_d(\\\\mathscr{X}). \\\\] We prove a\\ngeneralization: if $\\\\mathscr{X}$ is a shellable, strongly regular CW sphere or\\nCW ball of dimension $d$, then for all $\\\\lfloor \\\\frac{d-1}{2} \\\\rfloor \\\\leq k\\n\\\\leq d$, \\\\[ f_k(\\\\mathscr{X}) \\\\geq \\\\rho(d+1,k)f_d(\\\\mathscr{X}) + \\\\frac{1}{2}f_k(\\\\partial\\n\\\\mathscr{X}), \\\\] with equality precisely when $k=d$ or when $k=d-1$ and\\n$\\\\mathscr{X}$ is simplicial. We further prove that if $\\\\mathscr{S}$ is a\\nstrongly regular CW sphere of dimension $d$, and the face poset of\\n$\\\\mathscr{S}$ is both CL-shellable and dual CL-shellable, then\\n$f_k(\\\\mathscr{S}) \\\\geq \\\\min\\\\{f_0(\\\\mathscr{S}),f_d(\\\\mathscr{S})\\\\}$ for all $0\\n\\\\leq k \\\\leq d$.\",\"PeriodicalId\":501407,\"journal\":{\"name\":\"arXiv - MATH - Combinatorics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $\mathscr{X}$ be the boundary complex of a $(d+1)$-polytope, and let
$\rho(d+1,k) = \frac{1}{2}[{\lceil (d+1)/2 \rceil \choose d-k} + {\lfloor
(d+1)/2 \rfloor \choose d-k}]$. Recently, the author, answering B\'ar\'any's
question from 1998, proved that for all $\lfloor \frac{d-1}{2} \rfloor \leq k
\leq d$, \[ f_k(\mathscr{X}) \geq \rho(d+1,k)f_d(\mathscr{X}). \] We prove a
generalization: if $\mathscr{X}$ is a shellable, strongly regular CW sphere or
CW ball of dimension $d$, then for all $\lfloor \frac{d-1}{2} \rfloor \leq k
\leq d$, \[ f_k(\mathscr{X}) \geq \rho(d+1,k)f_d(\mathscr{X}) + \frac{1}{2}f_k(\partial
\mathscr{X}), \] with equality precisely when $k=d$ or when $k=d-1$ and
$\mathscr{X}$ is simplicial. We further prove that if $\mathscr{S}$ is a
strongly regular CW sphere of dimension $d$, and the face poset of
$\mathscr{S}$ is both CL-shellable and dual CL-shellable, then
$f_k(\mathscr{S}) \geq \min\{f_0(\mathscr{S}),f_d(\mathscr{S})\}$ for all $0
\leq k \leq d$.