{"title":"油田污水系统数字化调度的优化方法","authors":"Shuangqing Chen, Shun Zhou, Yuchun Li, Minghu Jiang, Bing Guan, Jiahao Xi","doi":"10.3390/w16182623","DOIUrl":null,"url":null,"abstract":"Oilfield Sewage System Scheduling is a complicated, large-scale, nonlinear system problem with multiple variables. The complexity of the sewage system pipeline network connection grows along with the ongoing building of oilfield stations, and the shortcomings of the sewage system water quantity scheduling program based on human experience decision-making become increasingly apparent. The key to solving this problem is to realize the digital and intelligent scheduling of sewage systems. Taking the sewage system of an oil production plant in Daqing oilfield as the research object, the water scheduling model of the sewage system is established in this paper. Aiming at the complex nonlinear characteristics of the model, the Levy flight speed updating operator, the adaptive stochastic offset operator, and the Brownian motion selection optimization operator are established by taking advantage of the particle swarm optimization (PSO) and the cuckoo search (CS) algorithm. Based on these operators, a hybrid PSO-CS algorithm is proposed, which jumps out of the local optimum and has a strong global search capability. Comparing PSO-CS with other algorithms on the CEC2022 test set, it was found that the PSO-CS algorithm ranked first in all 12 test functions, proving the excellent solving performance of the PSO-CS algorithm. Finally, the PSO-CS is applied to solve a water scheduling model for the sewage system of an oil production plant in Daqing Oilfield. It is found that the scheduling plan optimized by PSO-CS has a 100% water supply rate to the downstream water injection station, and the total energy consumption of the scheduling plan on the same day is reduced from 879.95 × 106 m5/d to 712.84 × 106 m5/d, which is a 19% reduction in energy consumption. The number of water balance stations in the sewage station increased by 7, which effectively improved the water resource utilization rate of the sewage station.","PeriodicalId":23788,"journal":{"name":"Water","volume":"3 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization Method for Digital Scheduling of Oilfield Sewage System\",\"authors\":\"Shuangqing Chen, Shun Zhou, Yuchun Li, Minghu Jiang, Bing Guan, Jiahao Xi\",\"doi\":\"10.3390/w16182623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oilfield Sewage System Scheduling is a complicated, large-scale, nonlinear system problem with multiple variables. The complexity of the sewage system pipeline network connection grows along with the ongoing building of oilfield stations, and the shortcomings of the sewage system water quantity scheduling program based on human experience decision-making become increasingly apparent. The key to solving this problem is to realize the digital and intelligent scheduling of sewage systems. Taking the sewage system of an oil production plant in Daqing oilfield as the research object, the water scheduling model of the sewage system is established in this paper. Aiming at the complex nonlinear characteristics of the model, the Levy flight speed updating operator, the adaptive stochastic offset operator, and the Brownian motion selection optimization operator are established by taking advantage of the particle swarm optimization (PSO) and the cuckoo search (CS) algorithm. Based on these operators, a hybrid PSO-CS algorithm is proposed, which jumps out of the local optimum and has a strong global search capability. Comparing PSO-CS with other algorithms on the CEC2022 test set, it was found that the PSO-CS algorithm ranked first in all 12 test functions, proving the excellent solving performance of the PSO-CS algorithm. Finally, the PSO-CS is applied to solve a water scheduling model for the sewage system of an oil production plant in Daqing Oilfield. It is found that the scheduling plan optimized by PSO-CS has a 100% water supply rate to the downstream water injection station, and the total energy consumption of the scheduling plan on the same day is reduced from 879.95 × 106 m5/d to 712.84 × 106 m5/d, which is a 19% reduction in energy consumption. The number of water balance stations in the sewage station increased by 7, which effectively improved the water resource utilization rate of the sewage station.\",\"PeriodicalId\":23788,\"journal\":{\"name\":\"Water\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/w16182623\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16182623","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Optimization Method for Digital Scheduling of Oilfield Sewage System
Oilfield Sewage System Scheduling is a complicated, large-scale, nonlinear system problem with multiple variables. The complexity of the sewage system pipeline network connection grows along with the ongoing building of oilfield stations, and the shortcomings of the sewage system water quantity scheduling program based on human experience decision-making become increasingly apparent. The key to solving this problem is to realize the digital and intelligent scheduling of sewage systems. Taking the sewage system of an oil production plant in Daqing oilfield as the research object, the water scheduling model of the sewage system is established in this paper. Aiming at the complex nonlinear characteristics of the model, the Levy flight speed updating operator, the adaptive stochastic offset operator, and the Brownian motion selection optimization operator are established by taking advantage of the particle swarm optimization (PSO) and the cuckoo search (CS) algorithm. Based on these operators, a hybrid PSO-CS algorithm is proposed, which jumps out of the local optimum and has a strong global search capability. Comparing PSO-CS with other algorithms on the CEC2022 test set, it was found that the PSO-CS algorithm ranked first in all 12 test functions, proving the excellent solving performance of the PSO-CS algorithm. Finally, the PSO-CS is applied to solve a water scheduling model for the sewage system of an oil production plant in Daqing Oilfield. It is found that the scheduling plan optimized by PSO-CS has a 100% water supply rate to the downstream water injection station, and the total energy consumption of the scheduling plan on the same day is reduced from 879.95 × 106 m5/d to 712.84 × 106 m5/d, which is a 19% reduction in energy consumption. The number of water balance stations in the sewage station increased by 7, which effectively improved the water resource utilization rate of the sewage station.
期刊介绍:
Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.