利用粒子跟踪测试代码探索 HEP 的代码可移植性解决方案

Hammad Ather, Sophie Berkman, Giuseppe Cerati, Matti Kortelainen, Ka Hei Martin Kwok, Steven Lantz, Seyong Lee, Boyana Norris, Michael Reid, Allison Reinsvold Hall, Daniel Riley, Alexei Strelchenko, Cong Wang
{"title":"利用粒子跟踪测试代码探索 HEP 的代码可移植性解决方案","authors":"Hammad Ather, Sophie Berkman, Giuseppe Cerati, Matti Kortelainen, Ka Hei Martin Kwok, Steven Lantz, Seyong Lee, Boyana Norris, Michael Reid, Allison Reinsvold Hall, Daniel Riley, Alexei Strelchenko, Cong Wang","doi":"arxiv-2409.09228","DOIUrl":null,"url":null,"abstract":"Traditionally, high energy physics (HEP) experiments have relied on x86 CPUs\nfor the majority of their significant computing needs. As the field looks ahead\nto the next generation of experiments such as DUNE and the High-Luminosity LHC,\nthe computing demands are expected to increase dramatically. To cope with this\nincrease, it will be necessary to take advantage of all available computing\nresources, including GPUs from different vendors. A broad landscape of code\nportability tools -- including compiler pragma-based approaches, abstraction\nlibraries, and other tools -- allow the same source code to run efficiently on\nmultiple architectures. In this paper, we use a test code taken from a HEP\ntracking algorithm to compare the performance and experience of implementing\ndifferent portability solutions.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring code portability solutions for HEP with a particle tracking test code\",\"authors\":\"Hammad Ather, Sophie Berkman, Giuseppe Cerati, Matti Kortelainen, Ka Hei Martin Kwok, Steven Lantz, Seyong Lee, Boyana Norris, Michael Reid, Allison Reinsvold Hall, Daniel Riley, Alexei Strelchenko, Cong Wang\",\"doi\":\"arxiv-2409.09228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, high energy physics (HEP) experiments have relied on x86 CPUs\\nfor the majority of their significant computing needs. As the field looks ahead\\nto the next generation of experiments such as DUNE and the High-Luminosity LHC,\\nthe computing demands are expected to increase dramatically. To cope with this\\nincrease, it will be necessary to take advantage of all available computing\\nresources, including GPUs from different vendors. A broad landscape of code\\nportability tools -- including compiler pragma-based approaches, abstraction\\nlibraries, and other tools -- allow the same source code to run efficiently on\\nmultiple architectures. In this paper, we use a test code taken from a HEP\\ntracking algorithm to compare the performance and experience of implementing\\ndifferent portability solutions.\",\"PeriodicalId\":501181,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Experiment\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Experiment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统上,高能物理(HEP)实验的大部分重要计算需求都依赖于 x86 CPU。随着该领域对下一代实验(如 DUNE 和高亮度 LHC)的展望,预计计算需求将急剧增加。为了应对这一增长,有必要利用所有可用的计算资源,包括来自不同供应商的 GPU。代码可移植性工具的广泛应用--包括基于编译器语法的方法、抽象库和其他工具--允许相同的源代码在多种架构上高效运行。在本文中,我们使用 HEPtracking 算法的测试代码来比较不同可移植性解决方案的性能和实施经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring code portability solutions for HEP with a particle tracking test code
Traditionally, high energy physics (HEP) experiments have relied on x86 CPUs for the majority of their significant computing needs. As the field looks ahead to the next generation of experiments such as DUNE and the High-Luminosity LHC, the computing demands are expected to increase dramatically. To cope with this increase, it will be necessary to take advantage of all available computing resources, including GPUs from different vendors. A broad landscape of code portability tools -- including compiler pragma-based approaches, abstraction libraries, and other tools -- allow the same source code to run efficiently on multiple architectures. In this paper, we use a test code taken from a HEP tracking algorithm to compare the performance and experience of implementing different portability solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信