抛物方程的迪里夏特问题与正则性问题之间的关系

Martin Dindoš, Erika Sätterqvist
{"title":"抛物方程的迪里夏特问题与正则性问题之间的关系","authors":"Martin Dindoš, Erika Sätterqvist","doi":"arxiv-2409.09197","DOIUrl":null,"url":null,"abstract":"We study the relationship between the Dirichlet and Regularity problem for\nparabolic operators of the form $ L = \\mbox{div}(A\\nabla\\cdot) - \\partial_t $\non cylindrical domains $ \\Omega = \\mathcal O \\times \\mathbb R $, where the base\n$ \\mathcal O \\subset \\mathbb R^{n} $ is a $1$-sided chord arc domain (and for\none result Lipschitz) in the spatial variables. In the paper we answer the question when the solvability of the $L^p$\nRegularity problem for $L$ (denoted by $ (R_L)_{p} $) can be deduced from the\nsolvability of the $ L^{p'} $ Dirichlet problem for the adjoint operator $L^*$\n(denoted $ (D_L^*)_{p'} $). We show that this holds if for at least of $q\\in(1,\\infty)$ the problem $\n(R_L)_{q} $ is solvable. This result is a parabolic equivalent of two elliptic results of Kenig-Pipher\n(1993) and Shen (2006), the combination of which establishes the elliptic\nversion of our result. For the converse, see Dindo\\v{s}-Dyer (2019) where it is\nshown that $ (R_L)_{p}$ implies $ (D_L^*)_{p'}$ on parabolic\n$\\mbox{Lip}(1,1/2)$ domains.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A relation between the Dirichlet and the Regularity problem for Parabolic equations\",\"authors\":\"Martin Dindoš, Erika Sätterqvist\",\"doi\":\"arxiv-2409.09197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the relationship between the Dirichlet and Regularity problem for\\nparabolic operators of the form $ L = \\\\mbox{div}(A\\\\nabla\\\\cdot) - \\\\partial_t $\\non cylindrical domains $ \\\\Omega = \\\\mathcal O \\\\times \\\\mathbb R $, where the base\\n$ \\\\mathcal O \\\\subset \\\\mathbb R^{n} $ is a $1$-sided chord arc domain (and for\\none result Lipschitz) in the spatial variables. In the paper we answer the question when the solvability of the $L^p$\\nRegularity problem for $L$ (denoted by $ (R_L)_{p} $) can be deduced from the\\nsolvability of the $ L^{p'} $ Dirichlet problem for the adjoint operator $L^*$\\n(denoted $ (D_L^*)_{p'} $). We show that this holds if for at least of $q\\\\in(1,\\\\infty)$ the problem $\\n(R_L)_{q} $ is solvable. This result is a parabolic equivalent of two elliptic results of Kenig-Pipher\\n(1993) and Shen (2006), the combination of which establishes the elliptic\\nversion of our result. For the converse, see Dindo\\\\v{s}-Dyer (2019) where it is\\nshown that $ (R_L)_{p}$ implies $ (D_L^*)_{p'}$ on parabolic\\n$\\\\mbox{Lip}(1,1/2)$ domains.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了形式为 $ L = \mbox{div}(A\nabla\cdot) - \partial_t $ 的抛物线算子在圆柱域 $ \Omega = \mathcal O \times \mathbb R $ 上的迪里夏特问题与正则性问题之间的关系,其中基 $ \mathcal O \subset \mathbb R^{n} $ 是空间变量中的 1$ 边弦弧域(并且对于一个结果来说是 Lipschitz)。在本文中,我们将回答这样一个问题:当 $L 的 $L^p$ 规则性问题(用 $ (R_L)_{p} 表示)的可解性可以从 $ (R_L)_{p} 中推导出来时,那么 $L 的 $L^p$ 规则性问题的可解性是什么时候?表示为 $ (R_L)_{p}$)的$L^{p'}$正则问题的可解性可以从邻接算子$L^*$(表示为 $ (D_L^*)_{p'} $)的$L^{p'}$ Dirichlet 问题的可解性推导出来。我们证明,如果至少在 $q\in(1,\infty)$ 条件下,问题 $(R_L)_{q} $ 是可解的,那么这一点就成立。这个结果等同于 Kenig-Pipher(1993)和 Shen(2006)的两个椭圆结果的抛物线,它们的结合建立了我们结果的椭圆反演。反过来,请参见 Dindo\v{s}-Dyer (2019),其中证明了在抛物$\mbox{Lip}(1,1/2)$域上,$ (R_L)_{p}$ 意味着$ (D_L^*)_{p'}$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A relation between the Dirichlet and the Regularity problem for Parabolic equations
We study the relationship between the Dirichlet and Regularity problem for parabolic operators of the form $ L = \mbox{div}(A\nabla\cdot) - \partial_t $ on cylindrical domains $ \Omega = \mathcal O \times \mathbb R $, where the base $ \mathcal O \subset \mathbb R^{n} $ is a $1$-sided chord arc domain (and for one result Lipschitz) in the spatial variables. In the paper we answer the question when the solvability of the $L^p$ Regularity problem for $L$ (denoted by $ (R_L)_{p} $) can be deduced from the solvability of the $ L^{p'} $ Dirichlet problem for the adjoint operator $L^*$ (denoted $ (D_L^*)_{p'} $). We show that this holds if for at least of $q\in(1,\infty)$ the problem $ (R_L)_{q} $ is solvable. This result is a parabolic equivalent of two elliptic results of Kenig-Pipher (1993) and Shen (2006), the combination of which establishes the elliptic version of our result. For the converse, see Dindo\v{s}-Dyer (2019) where it is shown that $ (R_L)_{p}$ implies $ (D_L^*)_{p'}$ on parabolic $\mbox{Lip}(1,1/2)$ domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信