{"title":"非阿基米德局部场上的高低分析和小上限解耦","authors":"Ben Johnsrude","doi":"arxiv-2409.09163","DOIUrl":null,"url":null,"abstract":"We prove a small cap decoupling theorem for the parabola over a general\nnon-Archimedean local field for which $2\\neq 0$. We obtain polylogarithmic\ndependence on the scale parameter $R$ and polynomial dependence in the residue\nprime, except for the prime 2 for which the polynomial depends on degree. Our\nconstants are fully explicit.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-low analysis and small cap decoupling over non-Archimedean local fields\",\"authors\":\"Ben Johnsrude\",\"doi\":\"arxiv-2409.09163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a small cap decoupling theorem for the parabola over a general\\nnon-Archimedean local field for which $2\\\\neq 0$. We obtain polylogarithmic\\ndependence on the scale parameter $R$ and polynomial dependence in the residue\\nprime, except for the prime 2 for which the polynomial depends on degree. Our\\nconstants are fully explicit.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-low analysis and small cap decoupling over non-Archimedean local fields
We prove a small cap decoupling theorem for the parabola over a general
non-Archimedean local field for which $2\neq 0$. We obtain polylogarithmic
dependence on the scale parameter $R$ and polynomial dependence in the residue
prime, except for the prime 2 for which the polynomial depends on degree. Our
constants are fully explicit.