系数受约束的多项式的实零点个数

Tamás Erdélyi
{"title":"系数受约束的多项式的实零点个数","authors":"Tamás Erdélyi","doi":"arxiv-2409.09553","DOIUrl":null,"url":null,"abstract":"We use Jensen's formula to give an upper bound for the number of real zeros\nof polynomials with constrained coefficients. We prove that there is an\nabsolute constant $c > 0$ such that every polynomial $P$ of the form $$P(z) =\n\\sum_{j=0}^{n}{a_jz^j}\\,, \\quad |a_0| = 1\\,, \\quad |a_j| \\leq M\\,, \\quad a_j\n\\in \\Bbb{C}\\,, \\quad M \\geq 1\\,,$$ has at most $cn^{1/2}(1+\\log M)^{1/2}$ zeros\nin the interval $[-1,1]$. This result is sharp up to the multiplicative\nconstant $c > 0$ and extends an earlier result of Borwein, Erd\\'elyi, and K\\'os\nfrom the case $M=1$ to the case $M \\geq $1. This has also been proved recently\nwith the factor $(1+\\log M)$ rather than $(1+\\log M)^{1/2}$ in the Appendix of\na recent paper by Jacob and Nazarov by using a different method. We also prove\nthat there is an absolute constant $c > 0$ such that every polynomial $P$ of\nthe above form has at most $(c/a)(1+\\log M)$ zeros in the interval $[-1+a,1-a]$\nwith $a \\in (0,1)$. Finally we correct a somewhat incorrect proof of an earlier\nresult of Borwein and Erd\\'elyi by proving that there is a constant $\\eta > 0$\nsuch that every polynomial $P$ of the above form with $M = 1$ has at most $\\eta\nn^{1/2}$ zeros inside any polygon with vertices on the unit circle, where the\nmultiplicative constant $\\eta > 0$ depends only on the polygon.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The number of real zeros of polynomials with constrained coefficients\",\"authors\":\"Tamás Erdélyi\",\"doi\":\"arxiv-2409.09553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use Jensen's formula to give an upper bound for the number of real zeros\\nof polynomials with constrained coefficients. We prove that there is an\\nabsolute constant $c > 0$ such that every polynomial $P$ of the form $$P(z) =\\n\\\\sum_{j=0}^{n}{a_jz^j}\\\\,, \\\\quad |a_0| = 1\\\\,, \\\\quad |a_j| \\\\leq M\\\\,, \\\\quad a_j\\n\\\\in \\\\Bbb{C}\\\\,, \\\\quad M \\\\geq 1\\\\,,$$ has at most $cn^{1/2}(1+\\\\log M)^{1/2}$ zeros\\nin the interval $[-1,1]$. This result is sharp up to the multiplicative\\nconstant $c > 0$ and extends an earlier result of Borwein, Erd\\\\'elyi, and K\\\\'os\\nfrom the case $M=1$ to the case $M \\\\geq $1. This has also been proved recently\\nwith the factor $(1+\\\\log M)$ rather than $(1+\\\\log M)^{1/2}$ in the Appendix of\\na recent paper by Jacob and Nazarov by using a different method. We also prove\\nthat there is an absolute constant $c > 0$ such that every polynomial $P$ of\\nthe above form has at most $(c/a)(1+\\\\log M)$ zeros in the interval $[-1+a,1-a]$\\nwith $a \\\\in (0,1)$. Finally we correct a somewhat incorrect proof of an earlier\\nresult of Borwein and Erd\\\\'elyi by proving that there is a constant $\\\\eta > 0$\\nsuch that every polynomial $P$ of the above form with $M = 1$ has at most $\\\\eta\\nn^{1/2}$ zeros inside any polygon with vertices on the unit circle, where the\\nmultiplicative constant $\\\\eta > 0$ depends only on the polygon.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用詹森公式给出了具有约束系数的多项式的实零点个数的上限。我们证明存在一个绝对常数 $c > 0$,使得形式为 $$P(z) =\sum_{j=0}^{n}{a_jz^j}\, \quad |a_0| = 1\、, \quad |a_j| \leq M\,, \quad a_j\in \Bbb{C}\,, \quad M \geq 1\,, $$ 在区间 $[-1,1]$ 中最多有 $cn^{1/2}(1+\log M)^{1/2}$ 零点。这一结果在乘法常数 $c > 0$ 的范围内都是尖锐的,并将 Borwein, Erd\'elyi, and K\'os 早期的一个结果从 $M=1$ 的情况扩展到了 $M \geq $1 的情况。最近,雅各布和纳扎罗夫在其最新论文的附录中用不同的方法证明了这一结果,其因子为 $(1+\log M)$ 而不是 $(1+\log M)^{1/2}$ 。我们还证明了存在一个绝对常数 $c > 0$,使得上述形式的每个多项式 $P$ 在区间 $[-1+a,1-a]$ 中最多有$(c/a)(1+\log M)$ 的零点,其中$a 在 (0,1)$ 中。最后,我们纠正了 Borwein 和 Erd\'elyi 早先一个结果的不正确证明,证明存在一个常量 $\eta > 0$,使得上面形式的多项式 $P$ 在任何顶点在单位圆上的多边形内最多有 $\etan^{1/2}$ 的零点,其中乘法常量 $\eta > 0$ 只取决于多边形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The number of real zeros of polynomials with constrained coefficients
We use Jensen's formula to give an upper bound for the number of real zeros of polynomials with constrained coefficients. We prove that there is an absolute constant $c > 0$ such that every polynomial $P$ of the form $$P(z) = \sum_{j=0}^{n}{a_jz^j}\,, \quad |a_0| = 1\,, \quad |a_j| \leq M\,, \quad a_j \in \Bbb{C}\,, \quad M \geq 1\,,$$ has at most $cn^{1/2}(1+\log M)^{1/2}$ zeros in the interval $[-1,1]$. This result is sharp up to the multiplicative constant $c > 0$ and extends an earlier result of Borwein, Erd\'elyi, and K\'os from the case $M=1$ to the case $M \geq $1. This has also been proved recently with the factor $(1+\log M)$ rather than $(1+\log M)^{1/2}$ in the Appendix of a recent paper by Jacob and Nazarov by using a different method. We also prove that there is an absolute constant $c > 0$ such that every polynomial $P$ of the above form has at most $(c/a)(1+\log M)$ zeros in the interval $[-1+a,1-a]$ with $a \in (0,1)$. Finally we correct a somewhat incorrect proof of an earlier result of Borwein and Erd\'elyi by proving that there is a constant $\eta > 0$ such that every polynomial $P$ of the above form with $M = 1$ has at most $\eta n^{1/2}$ zeros inside any polygon with vertices on the unit circle, where the multiplicative constant $\eta > 0$ depends only on the polygon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信