{"title":"硅砂透水砖的特性及其在雨水处理中的性能","authors":"Meijuan Chen, Weiying Li, Zhiqiang Dong, Dawei Zhang","doi":"10.3390/w16182625","DOIUrl":null,"url":null,"abstract":"The acceleration of urbanization has disrupted natural water cycles, resulting in increased impervious urban surfaces and non-point source pollution from stormwater runoff. Addressing urban stormwater recharge has become crucial. This study introduces a novel silica sand-based permeable filtration material, investigating its surface characteristics, pore structure, permeability, and pollutant interception capabilities. The results demonstrate that hydrophilic binder coating modification of the permeable surface sand aggregate, combined with hydrophilic inorganic additives, having a porous structure with an average pore size of less than 50 μm and a porosity between 15% and 35%, significantly enhances surface hydrophilicity, achieving a permeation rate of up to 6.8 mL/(min·cm²). Moreover, it shows exceptional filtration and anti-clogging properties, achieving over 98% suspended solids interception and strong resistance to fouling. Dynamic biofilm formation experiments using simulated rain and domestic wastewater explore biofilm morphology and function on silica sand filtration well surfaces. Mature biofilms sustain COD removal efficiency exceeding 70%, with levels consistently below 50 mg/L, NH4+ decreasing to 2 mg N/L, and total nitrogen maintained below 10 mg N/L. The system features anoxic, anoxic, and aerobic zones, fostering synergistic organic matter and nitrogen removal by diverse microorganisms, enhancing pollutant mitigation. Silica sand-based permeable filtration material effectively mitigates urban stormwater runoff pollutants—suspended solids, organic matter, and nitrogen—offering an innovative solution for sponge city development and rainwater resource management.","PeriodicalId":23788,"journal":{"name":"Water","volume":"3 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Silica Sand-Based Pervious Bricks and Their Performance under Stormwater Treatment\",\"authors\":\"Meijuan Chen, Weiying Li, Zhiqiang Dong, Dawei Zhang\",\"doi\":\"10.3390/w16182625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The acceleration of urbanization has disrupted natural water cycles, resulting in increased impervious urban surfaces and non-point source pollution from stormwater runoff. Addressing urban stormwater recharge has become crucial. This study introduces a novel silica sand-based permeable filtration material, investigating its surface characteristics, pore structure, permeability, and pollutant interception capabilities. The results demonstrate that hydrophilic binder coating modification of the permeable surface sand aggregate, combined with hydrophilic inorganic additives, having a porous structure with an average pore size of less than 50 μm and a porosity between 15% and 35%, significantly enhances surface hydrophilicity, achieving a permeation rate of up to 6.8 mL/(min·cm²). Moreover, it shows exceptional filtration and anti-clogging properties, achieving over 98% suspended solids interception and strong resistance to fouling. Dynamic biofilm formation experiments using simulated rain and domestic wastewater explore biofilm morphology and function on silica sand filtration well surfaces. Mature biofilms sustain COD removal efficiency exceeding 70%, with levels consistently below 50 mg/L, NH4+ decreasing to 2 mg N/L, and total nitrogen maintained below 10 mg N/L. The system features anoxic, anoxic, and aerobic zones, fostering synergistic organic matter and nitrogen removal by diverse microorganisms, enhancing pollutant mitigation. Silica sand-based permeable filtration material effectively mitigates urban stormwater runoff pollutants—suspended solids, organic matter, and nitrogen—offering an innovative solution for sponge city development and rainwater resource management.\",\"PeriodicalId\":23788,\"journal\":{\"name\":\"Water\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/w16182625\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16182625","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Characterization of Silica Sand-Based Pervious Bricks and Their Performance under Stormwater Treatment
The acceleration of urbanization has disrupted natural water cycles, resulting in increased impervious urban surfaces and non-point source pollution from stormwater runoff. Addressing urban stormwater recharge has become crucial. This study introduces a novel silica sand-based permeable filtration material, investigating its surface characteristics, pore structure, permeability, and pollutant interception capabilities. The results demonstrate that hydrophilic binder coating modification of the permeable surface sand aggregate, combined with hydrophilic inorganic additives, having a porous structure with an average pore size of less than 50 μm and a porosity between 15% and 35%, significantly enhances surface hydrophilicity, achieving a permeation rate of up to 6.8 mL/(min·cm²). Moreover, it shows exceptional filtration and anti-clogging properties, achieving over 98% suspended solids interception and strong resistance to fouling. Dynamic biofilm formation experiments using simulated rain and domestic wastewater explore biofilm morphology and function on silica sand filtration well surfaces. Mature biofilms sustain COD removal efficiency exceeding 70%, with levels consistently below 50 mg/L, NH4+ decreasing to 2 mg N/L, and total nitrogen maintained below 10 mg N/L. The system features anoxic, anoxic, and aerobic zones, fostering synergistic organic matter and nitrogen removal by diverse microorganisms, enhancing pollutant mitigation. Silica sand-based permeable filtration material effectively mitigates urban stormwater runoff pollutants—suspended solids, organic matter, and nitrogen—offering an innovative solution for sponge city development and rainwater resource management.
期刊介绍:
Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.