广义贝尔多项式

Antonio J. Durán
{"title":"广义贝尔多项式","authors":"Antonio J. Durán","doi":"arxiv-2409.11344","DOIUrl":null,"url":null,"abstract":"In this paper, generalized Bell polynomials $(\\Be_n^\\phi)_n$ associated to a\nsequence of real numbers $\\phi=(\\phi_i)_{i=1}^\\infty$ are introduced. Bell\npolynomials correspond to $\\phi_i=0$, $i\\ge 1$. We prove that when $\\phi_i\\ge\n0$, $i\\ge 1$: (a) the zeros of the generalized Bell polynomial $\\Be_n^\\phi$ are\nsimple, real and non positive; (b) the zeros of $\\Be_{n+1}^\\phi$ interlace the\nzeros of $\\Be_n^\\phi$; (c) the zeros are decreasing functions of the parameters\n$\\phi_i$. We find a hypergeometric representation for the generalized Bell\npolynomials. As a consequence, it is proved that the class of all generalized\nBell polynomials is actually the same class as that of all Laguerre multiple\npolynomials of the first kind.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Bell polynomials\",\"authors\":\"Antonio J. Durán\",\"doi\":\"arxiv-2409.11344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, generalized Bell polynomials $(\\\\Be_n^\\\\phi)_n$ associated to a\\nsequence of real numbers $\\\\phi=(\\\\phi_i)_{i=1}^\\\\infty$ are introduced. Bell\\npolynomials correspond to $\\\\phi_i=0$, $i\\\\ge 1$. We prove that when $\\\\phi_i\\\\ge\\n0$, $i\\\\ge 1$: (a) the zeros of the generalized Bell polynomial $\\\\Be_n^\\\\phi$ are\\nsimple, real and non positive; (b) the zeros of $\\\\Be_{n+1}^\\\\phi$ interlace the\\nzeros of $\\\\Be_n^\\\\phi$; (c) the zeros are decreasing functions of the parameters\\n$\\\\phi_i$. We find a hypergeometric representation for the generalized Bell\\npolynomials. As a consequence, it is proved that the class of all generalized\\nBell polynomials is actually the same class as that of all Laguerre multiple\\npolynomials of the first kind.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了与实数序列 $\phi=(\phi_i)_{i=1}^\infty$ 相关的广义贝尔多项式 $(\Be_n^\phi)_n$。Bellpolynomials 对应于 $\phi_i=0$, $i\ge 1$。我们证明,当 $\phi_i\ge0$, $i\ge 1$ 时:(a)广义贝尔多项式 $Be_n^\phi$ 的零点是简单、实数和非正的;(b)$\Be_{n+1}^\phi$ 的零点与 $Be_n^\phi$ 的零点交错;(c)零点是参数$\phi_i$ 的递减函数。我们找到了广义贝尔波列二项式的超几何表示。因此,我们证明了所有广义贝尔多项式的类实际上与所有第一类拉盖尔多项式的类相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Bell polynomials
In this paper, generalized Bell polynomials $(\Be_n^\phi)_n$ associated to a sequence of real numbers $\phi=(\phi_i)_{i=1}^\infty$ are introduced. Bell polynomials correspond to $\phi_i=0$, $i\ge 1$. We prove that when $\phi_i\ge 0$, $i\ge 1$: (a) the zeros of the generalized Bell polynomial $\Be_n^\phi$ are simple, real and non positive; (b) the zeros of $\Be_{n+1}^\phi$ interlace the zeros of $\Be_n^\phi$; (c) the zeros are decreasing functions of the parameters $\phi_i$. We find a hypergeometric representation for the generalized Bell polynomials. As a consequence, it is proved that the class of all generalized Bell polynomials is actually the same class as that of all Laguerre multiple polynomials of the first kind.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信