{"title":"用傅里叶和对广义泊松积分类进行逼近","authors":"Anatoly Serdyuk, Tetiana Stepaniuk","doi":"arxiv-2409.10629","DOIUrl":null,"url":null,"abstract":"We present a survey of results related to the solution of\nKolmogorov--Nikolsky problem for Fourier sums on the classes of generalized\nPoisson integrals $C^{\\alpha,r}_{\\beta,p}$, which consists in finding of\nasymptotic equalities for exact upper boundaries o f uniform norms of\ndeviations of partial Fourier sums on the classes of $2\\pi$--periodic functions\n$C^{\\alpha,r}_{\\beta,p}$, which are defined as convolutions of the functions,\nwhich belong to the unit balls pf the spaces $L_{p}$, $1\\leq p\\leq \\infty$,\nwith generalized Poisson kernels $$\nP_{\\alpha,r,\\beta}(t)=\\sum\\limits_{k=1}^{\\infty}e^{-\\alpha k^{r}}\\cos\n\\big(kt-\\frac{\\beta\\pi}{2}\\big), \\ \\alpha>0, r>0, \\ \\beta\\in \\mathbb{R}.$$","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation by Fourier sums on the classes of generalized Poisson integrals\",\"authors\":\"Anatoly Serdyuk, Tetiana Stepaniuk\",\"doi\":\"arxiv-2409.10629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a survey of results related to the solution of\\nKolmogorov--Nikolsky problem for Fourier sums on the classes of generalized\\nPoisson integrals $C^{\\\\alpha,r}_{\\\\beta,p}$, which consists in finding of\\nasymptotic equalities for exact upper boundaries o f uniform norms of\\ndeviations of partial Fourier sums on the classes of $2\\\\pi$--periodic functions\\n$C^{\\\\alpha,r}_{\\\\beta,p}$, which are defined as convolutions of the functions,\\nwhich belong to the unit balls pf the spaces $L_{p}$, $1\\\\leq p\\\\leq \\\\infty$,\\nwith generalized Poisson kernels $$\\nP_{\\\\alpha,r,\\\\beta}(t)=\\\\sum\\\\limits_{k=1}^{\\\\infty}e^{-\\\\alpha k^{r}}\\\\cos\\n\\\\big(kt-\\\\frac{\\\\beta\\\\pi}{2}\\\\big), \\\\ \\\\alpha>0, r>0, \\\\ \\\\beta\\\\in \\\\mathbb{R}.$$\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximation by Fourier sums on the classes of generalized Poisson integrals
We present a survey of results related to the solution of
Kolmogorov--Nikolsky problem for Fourier sums on the classes of generalized
Poisson integrals $C^{\alpha,r}_{\beta,p}$, which consists in finding of
asymptotic equalities for exact upper boundaries o f uniform norms of
deviations of partial Fourier sums on the classes of $2\pi$--periodic functions
$C^{\alpha,r}_{\beta,p}$, which are defined as convolutions of the functions,
which belong to the unit balls pf the spaces $L_{p}$, $1\leq p\leq \infty$,
with generalized Poisson kernels $$
P_{\alpha,r,\beta}(t)=\sum\limits_{k=1}^{\infty}e^{-\alpha k^{r}}\cos
\big(kt-\frac{\beta\pi}{2}\big), \ \alpha>0, r>0, \ \beta\in \mathbb{R}.$$