通过补偿紧凑性和规整变换研究等距沉浸的一些最新进展

Siran Li
{"title":"通过补偿紧凑性和规整变换研究等距沉浸的一些最新进展","authors":"Siran Li","doi":"arxiv-2409.08922","DOIUrl":null,"url":null,"abstract":"We survey recent developments on the analysis of Gauss--Codazzi--Ricci\nequations, the first-order PDE system arising from the classical problem of\nisometric immersions in differential geometry, especially in the regime of low\nSobolev regularity. Such equations are not purely elliptic, parabolic, or\nhyperbolic in general, hence calling for analytical tools for PDEs of mixed\ntypes. We discuss various recent contributions -- in line with the pioneering\nworks by G.-Q. Chen, M. Slemrod, and D. Wang [Proc. Amer. Math. Soc. (2010);\nComm. Math. Phys. (2010)] -- on the weak continuity of Gauss--Codazzi--Ricci\nequations, the weak stability of isometric immersions, and the fundamental\ntheorem of submanifold theory with low regularity. Two mixed-type PDE\ntechniques are emphasised throughout these developments: the method of\ncompensated compactness and the theory of Coulomb--Uhlenbeck gauges.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some recent developments on isometric immersions via compensated compactness and gauge transforms\",\"authors\":\"Siran Li\",\"doi\":\"arxiv-2409.08922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We survey recent developments on the analysis of Gauss--Codazzi--Ricci\\nequations, the first-order PDE system arising from the classical problem of\\nisometric immersions in differential geometry, especially in the regime of low\\nSobolev regularity. Such equations are not purely elliptic, parabolic, or\\nhyperbolic in general, hence calling for analytical tools for PDEs of mixed\\ntypes. We discuss various recent contributions -- in line with the pioneering\\nworks by G.-Q. Chen, M. Slemrod, and D. Wang [Proc. Amer. Math. Soc. (2010);\\nComm. Math. Phys. (2010)] -- on the weak continuity of Gauss--Codazzi--Ricci\\nequations, the weak stability of isometric immersions, and the fundamental\\ntheorem of submanifold theory with low regularity. Two mixed-type PDE\\ntechniques are emphasised throughout these developments: the method of\\ncompensated compactness and the theory of Coulomb--Uhlenbeck gauges.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高斯--柯达兹--里奇方程是微分几何中等距浸入经典问题所产生的一阶 PDE 系统,特别是在低索博廖夫正则性条件下的一阶 PDE 系统。这类方程一般不是纯粹的椭圆、抛物或双曲方程,因此需要混合型 PDE 的分析工具。我们讨论了最近的各种贡献--与 G.-Q. Chen、M. Slemrod 和 G.-Q.M. Slemrod 的开创性工作相一致。Chen、M. Slemrod 和 D. Wang [Proc. Amer. Math. Soc. (2010);Comm. Math. Phys. (2010)]的开创性工作相一致,讨论了关于高斯--科达齐--里奇方程的弱连续性、等距沉浸的弱稳定性以及低正则性子满理论的基本定理。这些发展强调了两种混合型 PDE 技术:补偿紧凑性方法和库仑-乌伦贝克量规理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some recent developments on isometric immersions via compensated compactness and gauge transforms
We survey recent developments on the analysis of Gauss--Codazzi--Ricci equations, the first-order PDE system arising from the classical problem of isometric immersions in differential geometry, especially in the regime of low Sobolev regularity. Such equations are not purely elliptic, parabolic, or hyperbolic in general, hence calling for analytical tools for PDEs of mixed types. We discuss various recent contributions -- in line with the pioneering works by G.-Q. Chen, M. Slemrod, and D. Wang [Proc. Amer. Math. Soc. (2010); Comm. Math. Phys. (2010)] -- on the weak continuity of Gauss--Codazzi--Ricci equations, the weak stability of isometric immersions, and the fundamental theorem of submanifold theory with low regularity. Two mixed-type PDE techniques are emphasised throughout these developments: the method of compensated compactness and the theory of Coulomb--Uhlenbeck gauges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信