空间形式中的双保守超曲面 $\overline{M}^{\lowercase{n+1}}(\lowercase{c})$

Ram Shankar Gupta, Andreas Arvanitoyeorgos
{"title":"空间形式中的双保守超曲面 $\\overline{M}^{\\lowercase{n+1}}(\\lowercase{c})$","authors":"Ram Shankar Gupta, Andreas Arvanitoyeorgos","doi":"arxiv-2409.08593","DOIUrl":null,"url":null,"abstract":"In this paper we study biconservative hypersurfaces $M$ in space forms\n$\\overline M^{n+1}(c)$ with four distinct principal curvatures whose second\nfundamental form has constant norm. We prove that every such hypersurface has\nconstant mean curvature and constant scalar curvature.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biconservative hypersurfaces in space forms $\\\\overline{M}^{\\\\lowercase{n+1}}(\\\\lowercase{c})$\",\"authors\":\"Ram Shankar Gupta, Andreas Arvanitoyeorgos\",\"doi\":\"arxiv-2409.08593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study biconservative hypersurfaces $M$ in space forms\\n$\\\\overline M^{n+1}(c)$ with four distinct principal curvatures whose second\\nfundamental form has constant norm. We prove that every such hypersurface has\\nconstant mean curvature and constant scalar curvature.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究空间形式$/overline M^{n+1}(c)$中的双保守超曲面$M$,它具有四个不同的主曲率,其第二基本形式具有恒定的规范。我们证明每一个这样的超曲面都有恒定的平均曲率和恒定的标量曲率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biconservative hypersurfaces in space forms $\overline{M}^{\lowercase{n+1}}(\lowercase{c})$
In this paper we study biconservative hypersurfaces $M$ in space forms $\overline M^{n+1}(c)$ with four distinct principal curvatures whose second fundamental form has constant norm. We prove that every such hypersurface has constant mean curvature and constant scalar curvature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信