{"title":"凸期望下随机最大原则与动态程序设计原则的关系","authors":"Xiaojuan Li, Mingshang Hu","doi":"arxiv-2409.10987","DOIUrl":null,"url":null,"abstract":"In this paper, we study the relationship between maximum principle (MP) and\ndynamic programming principle (DPP) for forward-backward control system under\nconsistent convex expectation dominated by G-expectation. Under the smooth\nassumptions for the value function, we get the relationship between MP and DPP\nunder a reference probability by establishing a useful estimate. If the value\nfunction is not smooth, then we obtain the first-order sub-jet and super-jet of\nthe value function at any t. However, the processing method in this case is\nmuch more difficult than that when t equals 0.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationship between stochastic maximum principle and dynamic programming principle under convex expectation\",\"authors\":\"Xiaojuan Li, Mingshang Hu\",\"doi\":\"arxiv-2409.10987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the relationship between maximum principle (MP) and\\ndynamic programming principle (DPP) for forward-backward control system under\\nconsistent convex expectation dominated by G-expectation. Under the smooth\\nassumptions for the value function, we get the relationship between MP and DPP\\nunder a reference probability by establishing a useful estimate. If the value\\nfunction is not smooth, then we obtain the first-order sub-jet and super-jet of\\nthe value function at any t. However, the processing method in this case is\\nmuch more difficult than that when t equals 0.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了由 G 期望支配的一致凸期望下前后向控制系统的最大原理(MP)与动态编程原理(DPP)之间的关系。在值函数平滑的假设条件下,我们通过建立一个有用的估计值,得到了在参考概率下 MP 与 DPP 的关系。如果值函数不平滑,则我们可以得到任意 t 下值函数的一阶子喷流和超喷流,但这种情况下的处理方法要比 t 等于 0 时的处理方法困难得多。
Relationship between stochastic maximum principle and dynamic programming principle under convex expectation
In this paper, we study the relationship between maximum principle (MP) and
dynamic programming principle (DPP) for forward-backward control system under
consistent convex expectation dominated by G-expectation. Under the smooth
assumptions for the value function, we get the relationship between MP and DPP
under a reference probability by establishing a useful estimate. If the value
function is not smooth, then we obtain the first-order sub-jet and super-jet of
the value function at any t. However, the processing method in this case is
much more difficult than that when t equals 0.