用粗糙控制法控制 LTI 系统

Lucas DavronCEREMADE
{"title":"用粗糙控制法控制 LTI 系统","authors":"Lucas DavronCEREMADE","doi":"arxiv-2409.11766","DOIUrl":null,"url":null,"abstract":"The theory of linear time invariant systems is well established and allows,\namong other things, to formulate and solve control problems in finite time. In\nthis context the control laws are typically taken in a space of the form\nL^p(0,T;U). In this paper we consider the possibility of taking control laws in\n(H^1(0,T;U))* , which induces non-trivial issues. We overcome these\ndifficulties by adapting the functional setting, notably by considering a\ngeneralized final state for the systems under consideration. In addition we\ncollect time regularity properties and we pretend that in general it is not\npossible to consider control laws in H^{-1}(0,T;U). Then, we apply our results\nto propose an interpretation of the inifinite order of defect for an\nobservability inequality, in terms of controllability properties.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the control of LTI systems with rough control laws\",\"authors\":\"Lucas DavronCEREMADE\",\"doi\":\"arxiv-2409.11766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theory of linear time invariant systems is well established and allows,\\namong other things, to formulate and solve control problems in finite time. In\\nthis context the control laws are typically taken in a space of the form\\nL^p(0,T;U). In this paper we consider the possibility of taking control laws in\\n(H^1(0,T;U))* , which induces non-trivial issues. We overcome these\\ndifficulties by adapting the functional setting, notably by considering a\\ngeneralized final state for the systems under consideration. In addition we\\ncollect time regularity properties and we pretend that in general it is not\\npossible to consider control laws in H^{-1}(0,T;U). Then, we apply our results\\nto propose an interpretation of the inifinite order of defect for an\\nobservability inequality, in terms of controllability properties.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

线性时不变系统的理论已经非常成熟,可以用于制定和解决有限时间内的控制问题。在这种情况下,控制法则通常是在 L^p(0,T;U)形式的空间中提取的。在本文中,我们考虑了在(H^1(0,T;U))*中提取控制律的可能性,这将引发一些非同小可的问题。我们通过调整函数设置克服了这些困难,特别是考虑了所考虑系统的广义最终状态。此外,我们还收集了时间正则特性,并假定一般情况下不可能考虑 H^{-1}(0,T;U)中的控制律。然后,我们运用我们的结果,从可控性属性的角度提出了对可观测性不等式缺陷无限阶的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the control of LTI systems with rough control laws
The theory of linear time invariant systems is well established and allows, among other things, to formulate and solve control problems in finite time. In this context the control laws are typically taken in a space of the form L^p(0,T;U). In this paper we consider the possibility of taking control laws in (H^1(0,T;U))* , which induces non-trivial issues. We overcome these difficulties by adapting the functional setting, notably by considering a generalized final state for the systems under consideration. In addition we collect time regularity properties and we pretend that in general it is not possible to consider control laws in H^{-1}(0,T;U). Then, we apply our results to propose an interpretation of the inifinite order of defect for an observability inequality, in terms of controllability properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信