论最大覆盖位置问题升级版的复杂性

Marta Baldomero-Naranjo, Jörg Kalcsics, Antonio M. Rodríguez-Chía
{"title":"论最大覆盖位置问题升级版的复杂性","authors":"Marta Baldomero-Naranjo, Jörg Kalcsics, Antonio M. Rodríguez-Chía","doi":"arxiv-2409.11900","DOIUrl":null,"url":null,"abstract":"In this article, we study the complexity of the upgrading version of the\nmaximal covering location problem with edge length modifications on networks.\nThis problem is NP-hard on general networks. However, in some particular cases,\nwe prove that this problem is solvable in polynomial time. The cases of star\nand path networks combined with different assumptions for the model parameters\nare analysed. In particular, we obtain that the problem on star networks is\nsolvable in O(nlogn) time for uniform weights and NP-hard for non-uniform\nweights. On paths, the single facility problem is solvable in O(n^3) time,\nwhile the p-facility problem is NP-hard even with uniform costs and upper\nbounds (maximal upgrading per edge), as well as, integer parameter values.\nFurthermore, a pseudo-polynomial algorithm is developed for the single facility\nproblem on trees with integer parameters.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the complexity of the upgrading version of the maximal covering location problem\",\"authors\":\"Marta Baldomero-Naranjo, Jörg Kalcsics, Antonio M. Rodríguez-Chía\",\"doi\":\"arxiv-2409.11900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the complexity of the upgrading version of the\\nmaximal covering location problem with edge length modifications on networks.\\nThis problem is NP-hard on general networks. However, in some particular cases,\\nwe prove that this problem is solvable in polynomial time. The cases of star\\nand path networks combined with different assumptions for the model parameters\\nare analysed. In particular, we obtain that the problem on star networks is\\nsolvable in O(nlogn) time for uniform weights and NP-hard for non-uniform\\nweights. On paths, the single facility problem is solvable in O(n^3) time,\\nwhile the p-facility problem is NP-hard even with uniform costs and upper\\nbounds (maximal upgrading per edge), as well as, integer parameter values.\\nFurthermore, a pseudo-polynomial algorithm is developed for the single facility\\nproblem on trees with integer parameters.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了网络上边长修正的最大覆盖位置问题升级版的复杂性。然而,在某些特殊情况下,我们证明这个问题可以在多项式时间内求解。我们分析了星形网络和路径网络的情况,并结合了对模型参数的不同假设。特别是,我们得出星形网络上的问题,在权重均匀的情况下,可以在 O(nlogn) 时间内求解,而在权重不均匀的情况下,则很难求解。在路径上,单设施问题可在 O(n^3) 时间内求解,而 p 设施问题即使在成本和上限(每条边的最大升级)均匀以及参数值为整数的情况下也是 NP-hard。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the complexity of the upgrading version of the maximal covering location problem
In this article, we study the complexity of the upgrading version of the maximal covering location problem with edge length modifications on networks. This problem is NP-hard on general networks. However, in some particular cases, we prove that this problem is solvable in polynomial time. The cases of star and path networks combined with different assumptions for the model parameters are analysed. In particular, we obtain that the problem on star networks is solvable in O(nlogn) time for uniform weights and NP-hard for non-uniform weights. On paths, the single facility problem is solvable in O(n^3) time, while the p-facility problem is NP-hard even with uniform costs and upper bounds (maximal upgrading per edge), as well as, integer parameter values. Furthermore, a pseudo-polynomial algorithm is developed for the single facility problem on trees with integer parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信