有边缘需求的最大遗憾最大覆盖位置问题

Marta Baldomero-Naranjo, Jörg Kalcsics, Antonio M. Rodríguez-Chía
{"title":"有边缘需求的最大遗憾最大覆盖位置问题","authors":"Marta Baldomero-Naranjo, Jörg Kalcsics, Antonio M. Rodríguez-Chía","doi":"arxiv-2409.11872","DOIUrl":null,"url":null,"abstract":"This paper addresses a version of the single-facility Maximal Covering\nLocation Problem on a network where the demand is: (i) distributed along the\nedges and (ii) uncertain with only a known interval estimation. To deal with\nthis problem, we propose a minmax regret model where the service facility can\nbe located anywhere along the network. This problem is called Minmax Regret\nMaximal Covering Location Problem with demand distributed along the edges\n(MMR-EMCLP). Furthermore, we present two polynomial algorithms for finding the\nlocation that minimises the maximal regret assuming that the demand realisation\nis an unknown constant or linear function on each edge. We also include two\nillustrative examples as well as a computational study for the unknown constant\ndemand case to illustrate the potential and limits of the proposed methodology.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minmax regret maximal covering location problems with edge demands\",\"authors\":\"Marta Baldomero-Naranjo, Jörg Kalcsics, Antonio M. Rodríguez-Chía\",\"doi\":\"arxiv-2409.11872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses a version of the single-facility Maximal Covering\\nLocation Problem on a network where the demand is: (i) distributed along the\\nedges and (ii) uncertain with only a known interval estimation. To deal with\\nthis problem, we propose a minmax regret model where the service facility can\\nbe located anywhere along the network. This problem is called Minmax Regret\\nMaximal Covering Location Problem with demand distributed along the edges\\n(MMR-EMCLP). Furthermore, we present two polynomial algorithms for finding the\\nlocation that minimises the maximal regret assuming that the demand realisation\\nis an unknown constant or linear function on each edge. We also include two\\nillustrative examples as well as a computational study for the unknown constant\\ndemand case to illustrate the potential and limits of the proposed methodology.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论的是网络中单设施最大覆盖定位问题的一个版本,在该问题中,需求是:(i) 沿边缘分布的;(ii) 不确定的,只有已知的区间估计值。为了解决这个问题,我们提出了一个最小最大遗憾模型,在这个模型中,服务设施可以位于网络的任何位置。这个问题被称为需求沿边缘分布的最小后悔最大覆盖位置问题(MMR-EMCLP)。此外,我们还提出了两种多项式算法,用于寻找最大遗憾最小的位置,假设需求实现是每个边上的未知常数或线性函数。我们还列举了两个示例以及对未知常量需求情况的计算研究,以说明所提方法的潜力和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minmax regret maximal covering location problems with edge demands
This paper addresses a version of the single-facility Maximal Covering Location Problem on a network where the demand is: (i) distributed along the edges and (ii) uncertain with only a known interval estimation. To deal with this problem, we propose a minmax regret model where the service facility can be located anywhere along the network. This problem is called Minmax Regret Maximal Covering Location Problem with demand distributed along the edges (MMR-EMCLP). Furthermore, we present two polynomial algorithms for finding the location that minimises the maximal regret assuming that the demand realisation is an unknown constant or linear function on each edge. We also include two illustrative examples as well as a computational study for the unknown constant demand case to illustrate the potential and limits of the proposed methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信