最大覆盖位置问题中的边缘升级

Marta Baldomero-Naranjo, Jörg Kalcsics, Alfredo Marín, Antonio M. Rodríguez-Chía
{"title":"最大覆盖位置问题中的边缘升级","authors":"Marta Baldomero-Naranjo, Jörg Kalcsics, Alfredo Marín, Antonio M. Rodríguez-Chía","doi":"arxiv-2409.11883","DOIUrl":null,"url":null,"abstract":"We study the upgrading version of the maximal covering location problem with\nedge length modifications on networks. This problem aims at locating p\nfacilities on the vertices (of the network) so as to maximise coverage,\nconsidering that the length of the edges can be reduced at a cost, subject to a\ngiven budget. Hence, we have to decide on: the optimal location of p facilities\nand the optimal edge length reductions. This problem is NP-hard on general graphs. To solve it, we propose three\ndifferent mixed-integer formulations and a preprocessing phase for fixing\nvariables and removing some of the constraints. Moreover, we strengthen the\nproposed formulations including valid inequalities. Finally, we compare the\nthree formulations and their corresponding improvements by testing their\nperformance over different datasets.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upgrading edges in the maximal covering location problem\",\"authors\":\"Marta Baldomero-Naranjo, Jörg Kalcsics, Alfredo Marín, Antonio M. Rodríguez-Chía\",\"doi\":\"arxiv-2409.11883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the upgrading version of the maximal covering location problem with\\nedge length modifications on networks. This problem aims at locating p\\nfacilities on the vertices (of the network) so as to maximise coverage,\\nconsidering that the length of the edges can be reduced at a cost, subject to a\\ngiven budget. Hence, we have to decide on: the optimal location of p facilities\\nand the optimal edge length reductions. This problem is NP-hard on general graphs. To solve it, we propose three\\ndifferent mixed-integer formulations and a preprocessing phase for fixing\\nvariables and removing some of the constraints. Moreover, we strengthen the\\nproposed formulations including valid inequalities. Finally, we compare the\\nthree formulations and their corresponding improvements by testing their\\nperformance over different datasets.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是网络上最大覆盖位置问题的升级版,该问题具有边长修正功能。该问题旨在确定(网络的)顶点上 p 个设施的位置,以便最大化覆盖范围,同时考虑到在给定预算的条件下,可以有代价地缩短边长。因此,我们必须决定:p 个设施的最优位置和最优边长缩减。在一般图上,这个问题很难解决。为了解决这个问题,我们提出了三种不同的混合整数公式和一个预处理阶段,用于固定变量和移除一些约束条件。此外,我们还加强了包含有效不等式的拟议公式。最后,我们通过对不同数据集的性能测试,比较了这三种公式及其相应的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upgrading edges in the maximal covering location problem
We study the upgrading version of the maximal covering location problem with edge length modifications on networks. This problem aims at locating p facilities on the vertices (of the network) so as to maximise coverage, considering that the length of the edges can be reduced at a cost, subject to a given budget. Hence, we have to decide on: the optimal location of p facilities and the optimal edge length reductions. This problem is NP-hard on general graphs. To solve it, we propose three different mixed-integer formulations and a preprocessing phase for fixing variables and removing some of the constraints. Moreover, we strengthen the proposed formulations including valid inequalities. Finally, we compare the three formulations and their corresponding improvements by testing their performance over different datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信