具有二次成本函数的线性随机系统的最优自适应控制

Nian Liu, Cheng Zhao, Shaolin Tan, Jinhu Lü
{"title":"具有二次成本函数的线性随机系统的最优自适应控制","authors":"Nian Liu, Cheng Zhao, Shaolin Tan, Jinhu Lü","doi":"arxiv-2409.09250","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the adaptive linear quadratic Gaussian control\nproblem, where both the linear transformation matrix of the state $A$ and the\ncontrol gain matrix $B$ are unknown. The proposed adaptive optimal control only\nassumes that $(A, B)$ is stabilizable and $(A, Q^{1/2})$ is detectable, where\n$Q$ is the weighting matrix of the state in the quadratic cost function. This\ncondition significantly weakens the classic assumptions used in the literature.\nTo tackle this problem, a weighted least squares algorithm is modified by using\nrandom regularization method, which can ensure uniform stabilizability and\nuniform detectability of the family of estimated models. At the same time, a\ndiminishing excitation is incorporated into the design of the proposed adaptive\ncontrol to guarantee strong consistency of the desired components of the\nestimates. Finally, by utilizing this family of estimates, even if not all\ncomponents of them converge to the true values, it is demonstrated that a\ncertainty equivalence control with such a diminishing excitation is optimal for\nan ergodic quadratic cost function.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Adaptive Control of Linear Stochastic Systems with Quadratic Cost Function\",\"authors\":\"Nian Liu, Cheng Zhao, Shaolin Tan, Jinhu Lü\",\"doi\":\"arxiv-2409.09250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the adaptive linear quadratic Gaussian control\\nproblem, where both the linear transformation matrix of the state $A$ and the\\ncontrol gain matrix $B$ are unknown. The proposed adaptive optimal control only\\nassumes that $(A, B)$ is stabilizable and $(A, Q^{1/2})$ is detectable, where\\n$Q$ is the weighting matrix of the state in the quadratic cost function. This\\ncondition significantly weakens the classic assumptions used in the literature.\\nTo tackle this problem, a weighted least squares algorithm is modified by using\\nrandom regularization method, which can ensure uniform stabilizability and\\nuniform detectability of the family of estimated models. At the same time, a\\ndiminishing excitation is incorporated into the design of the proposed adaptive\\ncontrol to guarantee strong consistency of the desired components of the\\nestimates. Finally, by utilizing this family of estimates, even if not all\\ncomponents of them converge to the true values, it is demonstrated that a\\ncertainty equivalence control with such a diminishing excitation is optimal for\\nan ergodic quadratic cost function.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑的是自适应线性二次高斯控制问题,其中状态的线性变换矩阵 $A$ 和控制增益矩阵 $B$ 都是未知的。本文提出的自适应最优控制只假定 $(A, B)$ 是可稳定的,且 $(A, Q^{1/2})$ 是可检测的,其中 $Q$ 是二次成本函数中的状态加权矩阵。为了解决这个问题,我们采用随机正则化方法对加权最小二乘法进行了改进,从而确保估计模型族的均匀可稳定和均匀可检测性。同时,在所提出的自适应控制设计中加入了最小激励,以保证估计值的理想成分具有很强的一致性。最后,通过利用这个估计值系列,即使不是所有的估计值都收敛到真实值,也证明了具有这种递减激励的确定性等价控制对于遍历二次成本函数是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Adaptive Control of Linear Stochastic Systems with Quadratic Cost Function
In this paper, we consider the adaptive linear quadratic Gaussian control problem, where both the linear transformation matrix of the state $A$ and the control gain matrix $B$ are unknown. The proposed adaptive optimal control only assumes that $(A, B)$ is stabilizable and $(A, Q^{1/2})$ is detectable, where $Q$ is the weighting matrix of the state in the quadratic cost function. This condition significantly weakens the classic assumptions used in the literature. To tackle this problem, a weighted least squares algorithm is modified by using random regularization method, which can ensure uniform stabilizability and uniform detectability of the family of estimated models. At the same time, a diminishing excitation is incorporated into the design of the proposed adaptive control to guarantee strong consistency of the desired components of the estimates. Finally, by utilizing this family of estimates, even if not all components of them converge to the true values, it is demonstrated that a certainty equivalence control with such a diminishing excitation is optimal for an ergodic quadratic cost function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信