具有自由终端方向的球面上最优大地曲率约束杜宾斯路径的广义化

Deepak Prakash Kumar, Swaroop Darbha, Satyanarayana Gupta Manyam, David Casbeer
{"title":"具有自由终端方向的球面上最优大地曲率约束杜宾斯路径的广义化","authors":"Deepak Prakash Kumar, Swaroop Darbha, Satyanarayana Gupta Manyam, David Casbeer","doi":"arxiv-2409.09954","DOIUrl":null,"url":null,"abstract":"In this paper, motion planning for a Dubins vehicle on a unit sphere to\nattain a desired final location is considered. The radius of the Dubins path on\nthe sphere is lower bounded by $r$. In a previous study, this problem was\naddressed, wherein it was shown that the optimal path is of type $CG, CC,$ or a\ndegenerate path of the same for $r \\leq \\frac{1}{2}.$ Here, $C = L, R$ denotes\nan arc of a tight left or right turn of minimum turning radius $r,$ and $G$\ndenotes an arc of a great circle. In this study, the candidate paths for the\nsame problem are generalized to model vehicles with a larger turning radius. In\nparticular, it is shown that the candidate optimal paths are of type $CG, CC,$\nor a degenerate path of the same for $r \\leq \\frac{\\sqrt{3}}{2}.$ Noting that\nat most two $LG$ paths and two $RG$ paths can exist for a given final location,\nthis article further reduces the candidate optimal paths by showing that only\none $LG$ and one $RG$ path can be optimal, yielding a total of seven candidate\npaths for $r \\leq \\frac{\\sqrt{3}}{2}.$ Additional conditions for the optimality\nof $CC$ paths are also derived in this study.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalization of Optimal Geodesic Curvature Constrained Dubins' Path on Sphere with Free Terminal Orientation\",\"authors\":\"Deepak Prakash Kumar, Swaroop Darbha, Satyanarayana Gupta Manyam, David Casbeer\",\"doi\":\"arxiv-2409.09954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, motion planning for a Dubins vehicle on a unit sphere to\\nattain a desired final location is considered. The radius of the Dubins path on\\nthe sphere is lower bounded by $r$. In a previous study, this problem was\\naddressed, wherein it was shown that the optimal path is of type $CG, CC,$ or a\\ndegenerate path of the same for $r \\\\leq \\\\frac{1}{2}.$ Here, $C = L, R$ denotes\\nan arc of a tight left or right turn of minimum turning radius $r,$ and $G$\\ndenotes an arc of a great circle. In this study, the candidate paths for the\\nsame problem are generalized to model vehicles with a larger turning radius. In\\nparticular, it is shown that the candidate optimal paths are of type $CG, CC,$\\nor a degenerate path of the same for $r \\\\leq \\\\frac{\\\\sqrt{3}}{2}.$ Noting that\\nat most two $LG$ paths and two $RG$ paths can exist for a given final location,\\nthis article further reduces the candidate optimal paths by showing that only\\none $LG$ and one $RG$ path can be optimal, yielding a total of seven candidate\\npaths for $r \\\\leq \\\\frac{\\\\sqrt{3}}{2}.$ Additional conditions for the optimality\\nof $CC$ paths are also derived in this study.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了杜宾斯飞行器在单位球体上的运动规划,以达到所需的最终位置。球面上杜宾斯路径的半径下限为 $r$。在之前的一项研究中,已经解决了这一问题,结果表明最优路径为 $CG、CC、$ 或在 $r \leq \frac{1}{2} 条件下的同类路径。本研究将同一问题的候选路径推广到转弯半径更大的车辆模型中。特别是,研究表明,在 $r \leq \frac{sqrt{3}}{2} 条件下,候选最优路径的类型为 $CG、CC,或相同的退化路径。注意到对于给定的最终位置,最多可能存在两条$LG$路径和两条$RG$路径,本文进一步减少了候选最优路径,证明只有一条$LG$路径和一条$RG$路径是最优的,对于$r \leq \frac\{sqrt{3}}{2} ,总共有七条候选路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalization of Optimal Geodesic Curvature Constrained Dubins' Path on Sphere with Free Terminal Orientation
In this paper, motion planning for a Dubins vehicle on a unit sphere to attain a desired final location is considered. The radius of the Dubins path on the sphere is lower bounded by $r$. In a previous study, this problem was addressed, wherein it was shown that the optimal path is of type $CG, CC,$ or a degenerate path of the same for $r \leq \frac{1}{2}.$ Here, $C = L, R$ denotes an arc of a tight left or right turn of minimum turning radius $r,$ and $G$ denotes an arc of a great circle. In this study, the candidate paths for the same problem are generalized to model vehicles with a larger turning radius. In particular, it is shown that the candidate optimal paths are of type $CG, CC,$ or a degenerate path of the same for $r \leq \frac{\sqrt{3}}{2}.$ Noting that at most two $LG$ paths and two $RG$ paths can exist for a given final location, this article further reduces the candidate optimal paths by showing that only one $LG$ and one $RG$ path can be optimal, yielding a total of seven candidate paths for $r \leq \frac{\sqrt{3}}{2}.$ Additional conditions for the optimality of $CC$ paths are also derived in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信