用于具有惯性效应的凸优化的相对误差不精确 ADMM 分裂算法

M. Marques Alves, M. Geremia
{"title":"用于具有惯性效应的凸优化的相对误差不精确 ADMM 分裂算法","authors":"M. Marques Alves, M. Geremia","doi":"arxiv-2409.10311","DOIUrl":null,"url":null,"abstract":"We propose a new relative-error inexact version of the alternating direction\nmethod of multipliers (ADMM) for convex optimization. We prove the asymptotic\nconvergence of our main algorithm as well as pointwise and ergodic\niteration-complexities for residuals. We also justify the effectiveness of the\nproposed algorithm through some preliminary numerical experiments on regression\nproblems.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A relative-error inexact ADMM splitting algorithm for convex optimization with inertial effects\",\"authors\":\"M. Marques Alves, M. Geremia\",\"doi\":\"arxiv-2409.10311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new relative-error inexact version of the alternating direction\\nmethod of multipliers (ADMM) for convex optimization. We prove the asymptotic\\nconvergence of our main algorithm as well as pointwise and ergodic\\niteration-complexities for residuals. We also justify the effectiveness of the\\nproposed algorithm through some preliminary numerical experiments on regression\\nproblems.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种用于凸优化的新的相对误差不精确交替乘法(ADMM)。我们证明了主算法的渐近收敛性以及残差的点和遍历迭代复杂性。我们还通过一些回归问题的初步数值实验证明了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A relative-error inexact ADMM splitting algorithm for convex optimization with inertial effects
We propose a new relative-error inexact version of the alternating direction method of multipliers (ADMM) for convex optimization. We prove the asymptotic convergence of our main algorithm as well as pointwise and ergodic iteration-complexities for residuals. We also justify the effectiveness of the proposed algorithm through some preliminary numerical experiments on regression problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信