具有自由终点方向的球面上最优大地曲率约束杜宾斯路径

Deepak Prakash Kumar, Swaroop Darbha, Satyanarayana Gupta Manyam, Dzung Tran, David W. Casbeer
{"title":"具有自由终点方向的球面上最优大地曲率约束杜宾斯路径","authors":"Deepak Prakash Kumar, Swaroop Darbha, Satyanarayana Gupta Manyam, Dzung Tran, David W. Casbeer","doi":"arxiv-2409.10363","DOIUrl":null,"url":null,"abstract":"In this paper, motion planning for a vehicle moving on a unit sphere with\nunit speed is considered, wherein the desired terminal location is fixed, but\nthe terminal orientation is free. The motion of the vehicle is modeled to be\nconstrained by a maximum geodesic curvature $U_{max},$ which controls the rate\nof change of heading of the vehicle such that the maximum heading change occurs\nwhen the vehicle travels on a tight circular arc of radius $r =\n\\frac{1}{\\sqrt{1 + U_{max}^2}}$. Using Pontryagin's Minimum Principle, the main\nresult of this paper shows that for $r \\leq \\frac{1}{2}$, the optimal path\nconnecting a given initial configuration and a final location on the sphere\nbelongs to a set of at most seven paths. The candidate paths are of type $CG,\nCC,$ and degenerate paths of the same, where $C \\in \\{L, R\\}$ denotes a tight\nleft or right turn, respectively, and $G$ denotes a great circular arc.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Geodesic Curvature Constrained Dubins' Path on Sphere with Free Terminal Orientation\",\"authors\":\"Deepak Prakash Kumar, Swaroop Darbha, Satyanarayana Gupta Manyam, Dzung Tran, David W. Casbeer\",\"doi\":\"arxiv-2409.10363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, motion planning for a vehicle moving on a unit sphere with\\nunit speed is considered, wherein the desired terminal location is fixed, but\\nthe terminal orientation is free. The motion of the vehicle is modeled to be\\nconstrained by a maximum geodesic curvature $U_{max},$ which controls the rate\\nof change of heading of the vehicle such that the maximum heading change occurs\\nwhen the vehicle travels on a tight circular arc of radius $r =\\n\\\\frac{1}{\\\\sqrt{1 + U_{max}^2}}$. Using Pontryagin's Minimum Principle, the main\\nresult of this paper shows that for $r \\\\leq \\\\frac{1}{2}$, the optimal path\\nconnecting a given initial configuration and a final location on the sphere\\nbelongs to a set of at most seven paths. The candidate paths are of type $CG,\\nCC,$ and degenerate paths of the same, where $C \\\\in \\\\{L, R\\\\}$ denotes a tight\\nleft or right turn, respectively, and $G$ denotes a great circular arc.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了在单位球面上以单位速度行驶的车辆的运动规划,其中所需的终点位置是固定的,但终点方向是自由的。车辆的运动模型受到最大大地曲率 $U_{max}$ 的约束,该曲率控制着车辆的航向变化率,当车辆在半径为 $r =\frac{1}{sqrt{1 + U_{max}^2}$ 的狭长圆弧上行驶时,航向变化最大。利用庞特里亚金最小原理,本文的主要结果表明,对于 $r \leq \frac{1}{2}$,连接给定初始配置和球面上最终位置的最优路径属于最多 7 条路径的集合。候选路径的类型有$CG,CC,$和相同的退化路径,其中$C \ in \{L, R\}$ 分别表示左转或右转,$G$表示大圆弧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Geodesic Curvature Constrained Dubins' Path on Sphere with Free Terminal Orientation
In this paper, motion planning for a vehicle moving on a unit sphere with unit speed is considered, wherein the desired terminal location is fixed, but the terminal orientation is free. The motion of the vehicle is modeled to be constrained by a maximum geodesic curvature $U_{max},$ which controls the rate of change of heading of the vehicle such that the maximum heading change occurs when the vehicle travels on a tight circular arc of radius $r = \frac{1}{\sqrt{1 + U_{max}^2}}$. Using Pontryagin's Minimum Principle, the main result of this paper shows that for $r \leq \frac{1}{2}$, the optimal path connecting a given initial configuration and a final location on the sphere belongs to a set of at most seven paths. The candidate paths are of type $CG, CC,$ and degenerate paths of the same, where $C \in \{L, R\}$ denotes a tight left or right turn, respectively, and $G$ denotes a great circular arc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信