解决情境优化中的误规范问题

Omar Bennouna, Jiawei Zhang, Saurabh Amin, Asuman Ozdaglar
{"title":"解决情境优化中的误规范问题","authors":"Omar Bennouna, Jiawei Zhang, Saurabh Amin, Asuman Ozdaglar","doi":"arxiv-2409.10479","DOIUrl":null,"url":null,"abstract":"We study a linear contextual optimization problem where a decision maker has\naccess to historical data and contextual features to learn a cost prediction\nmodel aimed at minimizing decision error. We adopt the predict-then-optimize\nframework for this analysis. Given that perfect model alignment with reality is\noften unrealistic in practice, we focus on scenarios where the chosen\nhypothesis set is misspecified. In this context, it remains unclear whether\ncurrent contextual optimization approaches can effectively address such model\nmisspecification. In this paper, we present a novel integrated learning and\noptimization approach designed to tackle model misspecification in contextual\noptimization. This approach offers theoretical generalizability, tractability,\nand optimality guarantees, along with strong practical performance. Our method\ninvolves minimizing a tractable surrogate loss that aligns with the performance\nvalue from cost vector predictions, regardless of whether the model\nmisspecified or not, and can be optimized in reasonable time. To our knowledge,\nno previous work has provided an approach with such guarantees in the context\nof model misspecification.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing misspecification in contextual optimization\",\"authors\":\"Omar Bennouna, Jiawei Zhang, Saurabh Amin, Asuman Ozdaglar\",\"doi\":\"arxiv-2409.10479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a linear contextual optimization problem where a decision maker has\\naccess to historical data and contextual features to learn a cost prediction\\nmodel aimed at minimizing decision error. We adopt the predict-then-optimize\\nframework for this analysis. Given that perfect model alignment with reality is\\noften unrealistic in practice, we focus on scenarios where the chosen\\nhypothesis set is misspecified. In this context, it remains unclear whether\\ncurrent contextual optimization approaches can effectively address such model\\nmisspecification. In this paper, we present a novel integrated learning and\\noptimization approach designed to tackle model misspecification in contextual\\noptimization. This approach offers theoretical generalizability, tractability,\\nand optimality guarantees, along with strong practical performance. Our method\\ninvolves minimizing a tractable surrogate loss that aligns with the performance\\nvalue from cost vector predictions, regardless of whether the model\\nmisspecified or not, and can be optimized in reasonable time. To our knowledge,\\nno previous work has provided an approach with such guarantees in the context\\nof model misspecification.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是一个线性上下文优化问题,在这个问题中,决策者可以获取历史数据和上下文特征,以学习一个成本预测模型,从而使决策误差最小化。我们采用预测-优化框架进行分析。鉴于模型与现实完全一致在实践中往往是不现实的,我们将重点放在所选假设集被错误指定的情景上。在这种情况下,目前的情境优化方法是否能有效解决这种模型误设问题,仍不清楚。在本文中,我们提出了一种新颖的集成学习和优化方法,旨在解决上下文优化中的模型误设问题。这种方法不仅具有理论上的普适性、可操作性和最优性保证,而且具有很强的实用性。我们的方法涉及最小化一个可控的替代损失,该损失与成本向量预测的性能值一致,无论模型是否被误设,都能在合理的时间内得到优化。据我们所知,以前还没有人在模型未定义的情况下提供过这种保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Addressing misspecification in contextual optimization
We study a linear contextual optimization problem where a decision maker has access to historical data and contextual features to learn a cost prediction model aimed at minimizing decision error. We adopt the predict-then-optimize framework for this analysis. Given that perfect model alignment with reality is often unrealistic in practice, we focus on scenarios where the chosen hypothesis set is misspecified. In this context, it remains unclear whether current contextual optimization approaches can effectively address such model misspecification. In this paper, we present a novel integrated learning and optimization approach designed to tackle model misspecification in contextual optimization. This approach offers theoretical generalizability, tractability, and optimality guarantees, along with strong practical performance. Our method involves minimizing a tractable surrogate loss that aligns with the performance value from cost vector predictions, regardless of whether the model misspecified or not, and can be optimized in reasonable time. To our knowledge, no previous work has provided an approach with such guarantees in the context of model misspecification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信