利用线性函数逼近进行可证明高效的无限视距平均回报强化学习

Woojin Chae, Dabeen Lee
{"title":"利用线性函数逼近进行可证明高效的无限视距平均回报强化学习","authors":"Woojin Chae, Dabeen Lee","doi":"arxiv-2409.10772","DOIUrl":null,"url":null,"abstract":"This paper proposes a computationally tractable algorithm for learning\ninfinite-horizon average-reward linear Markov decision processes (MDPs) and\nlinear mixture MDPs under the Bellman optimality condition. While guaranteeing\ncomputational efficiency, our algorithm for linear MDPs achieves the best-known\nregret upper bound of\n$\\widetilde{\\mathcal{O}}(d^{3/2}\\mathrm{sp}(v^*)\\sqrt{T})$ over $T$ time steps\nwhere $\\mathrm{sp}(v^*)$ is the span of the optimal bias function $v^*$ and $d$\nis the dimension of the feature mapping. For linear mixture MDPs, our algorithm\nattains a regret bound of\n$\\widetilde{\\mathcal{O}}(d\\cdot\\mathrm{sp}(v^*)\\sqrt{T})$. The algorithm\napplies novel techniques to control the covering number of the value function\nclass and the span of optimistic estimators of the value function, which is of\nindependent interest.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Provably Efficient Infinite-Horizon Average-Reward Reinforcement Learning with Linear Function Approximation\",\"authors\":\"Woojin Chae, Dabeen Lee\",\"doi\":\"arxiv-2409.10772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a computationally tractable algorithm for learning\\ninfinite-horizon average-reward linear Markov decision processes (MDPs) and\\nlinear mixture MDPs under the Bellman optimality condition. While guaranteeing\\ncomputational efficiency, our algorithm for linear MDPs achieves the best-known\\nregret upper bound of\\n$\\\\widetilde{\\\\mathcal{O}}(d^{3/2}\\\\mathrm{sp}(v^*)\\\\sqrt{T})$ over $T$ time steps\\nwhere $\\\\mathrm{sp}(v^*)$ is the span of the optimal bias function $v^*$ and $d$\\nis the dimension of the feature mapping. For linear mixture MDPs, our algorithm\\nattains a regret bound of\\n$\\\\widetilde{\\\\mathcal{O}}(d\\\\cdot\\\\mathrm{sp}(v^*)\\\\sqrt{T})$. The algorithm\\napplies novel techniques to control the covering number of the value function\\nclass and the span of optimistic estimators of the value function, which is of\\nindependent interest.\",\"PeriodicalId\":501286,\"journal\":{\"name\":\"arXiv - MATH - Optimization and Control\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Optimization and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种可计算的算法,用于在贝尔曼最优条件下学习无限视距平均回报线性马尔可夫决策过程(MDPs)和线性混合MDPs。在保证计算效率的同时,我们的线性MDPs算法在$T$时间步长内实现了$widetilde{\mathcal{O}}(d^{3/2}\mathrm{sp}(v^*)\sqrt{T})$的众所周知的遗憾上限,其中$mathrm{sp}(v^*)$是最优偏置函数$v^*$的跨度,$d$是特征映射的维度。对于线性混合 MDPs,我们的算法获得了$widetilde{mathcal{O}}(dcdot\mathrm{sp}(v^*)\sqrt{T})$ 的遗憾约束。该算法应用了新颖的技术来控制值函数类的覆盖数和值函数乐观估计值的跨度,这一点与我们的兴趣息息相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Provably Efficient Infinite-Horizon Average-Reward Reinforcement Learning with Linear Function Approximation
This paper proposes a computationally tractable algorithm for learning infinite-horizon average-reward linear Markov decision processes (MDPs) and linear mixture MDPs under the Bellman optimality condition. While guaranteeing computational efficiency, our algorithm for linear MDPs achieves the best-known regret upper bound of $\widetilde{\mathcal{O}}(d^{3/2}\mathrm{sp}(v^*)\sqrt{T})$ over $T$ time steps where $\mathrm{sp}(v^*)$ is the span of the optimal bias function $v^*$ and $d$ is the dimension of the feature mapping. For linear mixture MDPs, our algorithm attains a regret bound of $\widetilde{\mathcal{O}}(d\cdot\mathrm{sp}(v^*)\sqrt{T})$. The algorithm applies novel techniques to control the covering number of the value function class and the span of optimistic estimators of the value function, which is of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信