Abobakr Al-Ttowi, Akmal Nizam Mohammed, Sami Al-Alimi, Wenbin Zhou, Yazid Saif, Iman Fitri Ismail
{"title":"使用各种湍流模型对 NREL 第六阶段风力涡轮机性能进行计算流体动力学 (CFD) 研究","authors":"Abobakr Al-Ttowi, Akmal Nizam Mohammed, Sami Al-Alimi, Wenbin Zhou, Yazid Saif, Iman Fitri Ismail","doi":"10.3390/pr12091994","DOIUrl":null,"url":null,"abstract":"This study presents a detailed computational fluid dynamics (CFD) investigation into the aerodynamic performance of the NREL Phase VI wind turbine, focusing on torque and power generation under different turbulence models. The primary objective was to analyse the effect of various turbulence models and their responses in wind turbine torque generation. Furthermore, it also investigates the distance effect on wind velocity deficit. The research utilizes 2D and 3D simulations of the S809 airfoil and the full rotor, examining the predictive capabilities of the k-epsilon, k-omega, and k-omega SST turbulence models. The study incorporates both experimental validation and wake analysis using the Gaussian wake model to assess wind velocity deficits. Simulations were conducted for a wind speed range of (6–10 m/s), with results indicating that the k-epsilon model provided the closest match to experimental data, particularly at higher wind speeds within the targeted range. Even though k-epsilon results had better agreement when validated with experimental data, theoretically k-omega (SST) should perform better as it combines k-epsilon and k-omega advantages in predicting the flow regardless of its farness from the wall. However, in simulations using the k-omega (SST), the separation of flow and the shear stress transients were only visible at wind speeds of 10 m/s or higher. Wake effects, on the other hand, were found to cause significant velocity deficits behind the turbine, following an exponential decay pattern. The findings offer valuable insights into improving wind turbine performance through turbulence model selection and wake impact analysis, providing practical guidelines for future wind energy optimizations.","PeriodicalId":20597,"journal":{"name":"Processes","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Fluid Dynamics (CFD) Investigation of NREL Phase VI Wind Turbine Performance Using Various Turbulence Models\",\"authors\":\"Abobakr Al-Ttowi, Akmal Nizam Mohammed, Sami Al-Alimi, Wenbin Zhou, Yazid Saif, Iman Fitri Ismail\",\"doi\":\"10.3390/pr12091994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a detailed computational fluid dynamics (CFD) investigation into the aerodynamic performance of the NREL Phase VI wind turbine, focusing on torque and power generation under different turbulence models. The primary objective was to analyse the effect of various turbulence models and their responses in wind turbine torque generation. Furthermore, it also investigates the distance effect on wind velocity deficit. The research utilizes 2D and 3D simulations of the S809 airfoil and the full rotor, examining the predictive capabilities of the k-epsilon, k-omega, and k-omega SST turbulence models. The study incorporates both experimental validation and wake analysis using the Gaussian wake model to assess wind velocity deficits. Simulations were conducted for a wind speed range of (6–10 m/s), with results indicating that the k-epsilon model provided the closest match to experimental data, particularly at higher wind speeds within the targeted range. Even though k-epsilon results had better agreement when validated with experimental data, theoretically k-omega (SST) should perform better as it combines k-epsilon and k-omega advantages in predicting the flow regardless of its farness from the wall. However, in simulations using the k-omega (SST), the separation of flow and the shear stress transients were only visible at wind speeds of 10 m/s or higher. Wake effects, on the other hand, were found to cause significant velocity deficits behind the turbine, following an exponential decay pattern. The findings offer valuable insights into improving wind turbine performance through turbulence model selection and wake impact analysis, providing practical guidelines for future wind energy optimizations.\",\"PeriodicalId\":20597,\"journal\":{\"name\":\"Processes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Processes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/pr12091994\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/pr12091994","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Computational Fluid Dynamics (CFD) Investigation of NREL Phase VI Wind Turbine Performance Using Various Turbulence Models
This study presents a detailed computational fluid dynamics (CFD) investigation into the aerodynamic performance of the NREL Phase VI wind turbine, focusing on torque and power generation under different turbulence models. The primary objective was to analyse the effect of various turbulence models and their responses in wind turbine torque generation. Furthermore, it also investigates the distance effect on wind velocity deficit. The research utilizes 2D and 3D simulations of the S809 airfoil and the full rotor, examining the predictive capabilities of the k-epsilon, k-omega, and k-omega SST turbulence models. The study incorporates both experimental validation and wake analysis using the Gaussian wake model to assess wind velocity deficits. Simulations were conducted for a wind speed range of (6–10 m/s), with results indicating that the k-epsilon model provided the closest match to experimental data, particularly at higher wind speeds within the targeted range. Even though k-epsilon results had better agreement when validated with experimental data, theoretically k-omega (SST) should perform better as it combines k-epsilon and k-omega advantages in predicting the flow regardless of its farness from the wall. However, in simulations using the k-omega (SST), the separation of flow and the shear stress transients were only visible at wind speeds of 10 m/s or higher. Wake effects, on the other hand, were found to cause significant velocity deficits behind the turbine, following an exponential decay pattern. The findings offer valuable insights into improving wind turbine performance through turbulence model selection and wake impact analysis, providing practical guidelines for future wind energy optimizations.
期刊介绍:
Processes (ISSN 2227-9717) provides an advanced forum for process related research in chemistry, biology and allied engineering fields. The journal publishes regular research papers, communications, letters, short notes and reviews. Our aim is to encourage researchers to publish their experimental, theoretical and computational results in as much detail as necessary. There is no restriction on paper length or number of figures and tables.