Manuel Vargas, Rodolfo Mosquera, Guillermo Fuertes, Miguel Alfaro, Ileana Gloria Perez Vergara
{"title":"利用表面张力神经网络改进精益六西格玛,优化调味品中小企业的流程","authors":"Manuel Vargas, Rodolfo Mosquera, Guillermo Fuertes, Miguel Alfaro, Ileana Gloria Perez Vergara","doi":"10.3390/pr12092001","DOIUrl":null,"url":null,"abstract":"This study offers an innovative solution to address performance issues in the manufacturing process of garlic salt within a condiment-producing SME. A hybrid Lean/Six Sigma model utilizing a Surface Tension Neural Network (STNN) was implemented to control temperature and relative humidity in real-time. The model follows the Define, Measure, Analyze, Improve, Control (DMAIC) methodology to identify root causes and correlate them with waste. By integrating statistical tools, artificial intelligence, and engineering design principles, alternative solutions were evaluated to minimize waste. This document contributes to existing knowledge by demonstrating the integration of an STNN with the Lean/Six Sigma framework in condiment production, an area with limited empirical research. It underscores the benefits of advanced AI technologies in enhancing traditional process optimization methods. The STNN model achieved 97.31% accuracy for temperature classification and 97.37% for humidity, outperforming a Naive Bayes model, which attained 90% accuracy for both. The results showed a 3.15% increase in yield, saving 39.7 kg of waste per batch. Additionally, a 2.13-point improvement at the Six Sigma level was achieved, reducing defects per million opportunities by 551.722. These improvements resulted in significant cost savings, with a reduction in waste-related losses amounting to USD 1585 per batch. The study demonstrates that incorporating artificial intelligence into the Lean/Six Sigma methodology effectively addresses the limitations of traditional statistical methods. Significant improvements in yield and waste reduction highlight the potential of this approach, enhancing operational efficiency and profitability, and fostering sustainable manufacturing practices critical for SMEs’ competitiveness and sustainability in the global market.","PeriodicalId":20597,"journal":{"name":"Processes","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process Optimization in a Condiment SME through Improved Lean Six Sigma with a Surface Tension Neural Network\",\"authors\":\"Manuel Vargas, Rodolfo Mosquera, Guillermo Fuertes, Miguel Alfaro, Ileana Gloria Perez Vergara\",\"doi\":\"10.3390/pr12092001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study offers an innovative solution to address performance issues in the manufacturing process of garlic salt within a condiment-producing SME. A hybrid Lean/Six Sigma model utilizing a Surface Tension Neural Network (STNN) was implemented to control temperature and relative humidity in real-time. The model follows the Define, Measure, Analyze, Improve, Control (DMAIC) methodology to identify root causes and correlate them with waste. By integrating statistical tools, artificial intelligence, and engineering design principles, alternative solutions were evaluated to minimize waste. This document contributes to existing knowledge by demonstrating the integration of an STNN with the Lean/Six Sigma framework in condiment production, an area with limited empirical research. It underscores the benefits of advanced AI technologies in enhancing traditional process optimization methods. The STNN model achieved 97.31% accuracy for temperature classification and 97.37% for humidity, outperforming a Naive Bayes model, which attained 90% accuracy for both. The results showed a 3.15% increase in yield, saving 39.7 kg of waste per batch. Additionally, a 2.13-point improvement at the Six Sigma level was achieved, reducing defects per million opportunities by 551.722. These improvements resulted in significant cost savings, with a reduction in waste-related losses amounting to USD 1585 per batch. The study demonstrates that incorporating artificial intelligence into the Lean/Six Sigma methodology effectively addresses the limitations of traditional statistical methods. Significant improvements in yield and waste reduction highlight the potential of this approach, enhancing operational efficiency and profitability, and fostering sustainable manufacturing practices critical for SMEs’ competitiveness and sustainability in the global market.\",\"PeriodicalId\":20597,\"journal\":{\"name\":\"Processes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Processes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/pr12092001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/pr12092001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Process Optimization in a Condiment SME through Improved Lean Six Sigma with a Surface Tension Neural Network
This study offers an innovative solution to address performance issues in the manufacturing process of garlic salt within a condiment-producing SME. A hybrid Lean/Six Sigma model utilizing a Surface Tension Neural Network (STNN) was implemented to control temperature and relative humidity in real-time. The model follows the Define, Measure, Analyze, Improve, Control (DMAIC) methodology to identify root causes and correlate them with waste. By integrating statistical tools, artificial intelligence, and engineering design principles, alternative solutions were evaluated to minimize waste. This document contributes to existing knowledge by demonstrating the integration of an STNN with the Lean/Six Sigma framework in condiment production, an area with limited empirical research. It underscores the benefits of advanced AI technologies in enhancing traditional process optimization methods. The STNN model achieved 97.31% accuracy for temperature classification and 97.37% for humidity, outperforming a Naive Bayes model, which attained 90% accuracy for both. The results showed a 3.15% increase in yield, saving 39.7 kg of waste per batch. Additionally, a 2.13-point improvement at the Six Sigma level was achieved, reducing defects per million opportunities by 551.722. These improvements resulted in significant cost savings, with a reduction in waste-related losses amounting to USD 1585 per batch. The study demonstrates that incorporating artificial intelligence into the Lean/Six Sigma methodology effectively addresses the limitations of traditional statistical methods. Significant improvements in yield and waste reduction highlight the potential of this approach, enhancing operational efficiency and profitability, and fostering sustainable manufacturing practices critical for SMEs’ competitiveness and sustainability in the global market.
期刊介绍:
Processes (ISSN 2227-9717) provides an advanced forum for process related research in chemistry, biology and allied engineering fields. The journal publishes regular research papers, communications, letters, short notes and reviews. Our aim is to encourage researchers to publish their experimental, theoretical and computational results in as much detail as necessary. There is no restriction on paper length or number of figures and tables.