在 $mathbb{E}_{lowercase{s}}^{5}$ 中满足 $triangle \vec {H}=λ\vec {H}$ 的超曲面

Ram Shankar Gupta, Andreas Arvanitoyeorgos
{"title":"在 $mathbb{E}_{lowercase{s}}^{5}$ 中满足 $triangle \\vec {H}=λ\\vec {H}$ 的超曲面","authors":"Ram Shankar Gupta, Andreas Arvanitoyeorgos","doi":"arxiv-2409.08630","DOIUrl":null,"url":null,"abstract":"In this paper, we study hypersurfaces $M_{r}^{4}$ $(r=0, 1, 2, 3, 4)$\nsatisfying $\\triangle \\vec{H}=\\lambda \\vec{H}$ ($\\lambda$ a constant) in the\npseudo-Euclidean space $\\mathbb{E}_{s}^{5}$ $(s=0, 1, 2, 3, 4, 5)$. We obtain\nthat every such hypersurface in $\\mathbb{E}_{s}^{5}$ with diagonal shape\noperator has constant mean curvature, constant norm of second fundamental form\nand constant scalar curvature. Also, we prove that every biharmonic hypersurface in $\\mathbb{E}_{s}^{5}$\nwith diagonal shape operator must be minimal.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypersurfaces satisfying $\\\\triangle \\\\vec {H}=λ\\\\vec {H}$ in $\\\\mathbb{E}_{\\\\lowercase{s}}^{5}$\",\"authors\":\"Ram Shankar Gupta, Andreas Arvanitoyeorgos\",\"doi\":\"arxiv-2409.08630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study hypersurfaces $M_{r}^{4}$ $(r=0, 1, 2, 3, 4)$\\nsatisfying $\\\\triangle \\\\vec{H}=\\\\lambda \\\\vec{H}$ ($\\\\lambda$ a constant) in the\\npseudo-Euclidean space $\\\\mathbb{E}_{s}^{5}$ $(s=0, 1, 2, 3, 4, 5)$. We obtain\\nthat every such hypersurface in $\\\\mathbb{E}_{s}^{5}$ with diagonal shape\\noperator has constant mean curvature, constant norm of second fundamental form\\nand constant scalar curvature. Also, we prove that every biharmonic hypersurface in $\\\\mathbb{E}_{s}^{5}$\\nwith diagonal shape operator must be minimal.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了伪欧几里得空间 $M_{r}^{4}$ $(r=0, 1, 2, 3, 4)$ 中满足 $triangle \vec{H}=\lambda \vec{H}$ ($\lambda$ 为常数)的超曲面 $M_{r}^{4}$ $(s=0, 1, 2, 3, 4, 5)$ 。我们得到,$\mathbb{E}_{s}^{5}$ 中每一个具有对角线形状操作符的超曲面都具有恒定的平均曲率、恒定的第二基本形式规范和恒定的标量曲率。此外,我们还证明了 $\mathbb{E}_{s}^{5}$ 中每一个具有对角形状算子的双谐超曲面都必须是最小的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypersurfaces satisfying $\triangle \vec {H}=λ\vec {H}$ in $\mathbb{E}_{\lowercase{s}}^{5}$
In this paper, we study hypersurfaces $M_{r}^{4}$ $(r=0, 1, 2, 3, 4)$ satisfying $\triangle \vec{H}=\lambda \vec{H}$ ($\lambda$ a constant) in the pseudo-Euclidean space $\mathbb{E}_{s}^{5}$ $(s=0, 1, 2, 3, 4, 5)$. We obtain that every such hypersurface in $\mathbb{E}_{s}^{5}$ with diagonal shape operator has constant mean curvature, constant norm of second fundamental form and constant scalar curvature. Also, we prove that every biharmonic hypersurface in $\mathbb{E}_{s}^{5}$ with diagonal shape operator must be minimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信