{"title":"超卡勒流形族中的丰度和 SYZ 猜想","authors":"Andrey Soldatenkov, Misha Verbitsky","doi":"arxiv-2409.09142","DOIUrl":null,"url":null,"abstract":"Let $L$ be a holomorphic line bundle on a hyperkahler manifold $M$, with\n$c_1(L)$ nef and not big. SYZ conjecture predicts that $L$ is semiample. We\nprove that this is true, assuming that $(M,L)$ has a deformation $(M',L')$ with\n$L'$ semiample. We introduce a version of the Teichmuller space that\nparametrizes pairs $(M,L)$ up to isotopy. We prove a version of the global\nTorelli theorem for such Teichmuller spaces and use it to deduce the\ndeformation invariance of semiampleness.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abundance and SYZ conjecture in families of hyperkahler manifolds\",\"authors\":\"Andrey Soldatenkov, Misha Verbitsky\",\"doi\":\"arxiv-2409.09142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $L$ be a holomorphic line bundle on a hyperkahler manifold $M$, with\\n$c_1(L)$ nef and not big. SYZ conjecture predicts that $L$ is semiample. We\\nprove that this is true, assuming that $(M,L)$ has a deformation $(M',L')$ with\\n$L'$ semiample. We introduce a version of the Teichmuller space that\\nparametrizes pairs $(M,L)$ up to isotopy. We prove a version of the global\\nTorelli theorem for such Teichmuller spaces and use it to deduce the\\ndeformation invariance of semiampleness.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abundance and SYZ conjecture in families of hyperkahler manifolds
Let $L$ be a holomorphic line bundle on a hyperkahler manifold $M$, with
$c_1(L)$ nef and not big. SYZ conjecture predicts that $L$ is semiample. We
prove that this is true, assuming that $(M,L)$ has a deformation $(M',L')$ with
$L'$ semiample. We introduce a version of the Teichmuller space that
parametrizes pairs $(M,L)$ up to isotopy. We prove a version of the global
Torelli theorem for such Teichmuller spaces and use it to deduce the
deformation invariance of semiampleness.