超卡勒流形族中的丰度和 SYZ 猜想

Andrey Soldatenkov, Misha Verbitsky
{"title":"超卡勒流形族中的丰度和 SYZ 猜想","authors":"Andrey Soldatenkov, Misha Verbitsky","doi":"arxiv-2409.09142","DOIUrl":null,"url":null,"abstract":"Let $L$ be a holomorphic line bundle on a hyperkahler manifold $M$, with\n$c_1(L)$ nef and not big. SYZ conjecture predicts that $L$ is semiample. We\nprove that this is true, assuming that $(M,L)$ has a deformation $(M',L')$ with\n$L'$ semiample. We introduce a version of the Teichmuller space that\nparametrizes pairs $(M,L)$ up to isotopy. We prove a version of the global\nTorelli theorem for such Teichmuller spaces and use it to deduce the\ndeformation invariance of semiampleness.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abundance and SYZ conjecture in families of hyperkahler manifolds\",\"authors\":\"Andrey Soldatenkov, Misha Verbitsky\",\"doi\":\"arxiv-2409.09142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $L$ be a holomorphic line bundle on a hyperkahler manifold $M$, with\\n$c_1(L)$ nef and not big. SYZ conjecture predicts that $L$ is semiample. We\\nprove that this is true, assuming that $(M,L)$ has a deformation $(M',L')$ with\\n$L'$ semiample. We introduce a version of the Teichmuller space that\\nparametrizes pairs $(M,L)$ up to isotopy. We prove a version of the global\\nTorelli theorem for such Teichmuller spaces and use it to deduce the\\ndeformation invariance of semiampleness.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $L$ 是超卡勒流形 $M$ 上的全形线束,$c_1(L)$ nef 且不大。SYZ猜想预言$L$是半样条。我们假定 $(M,L)$ 有一个$(M',L'')$ 变形,其中$L'$ 是半范数,从而证明这是真的。我们引入了一个版本的泰赫穆勒空间,它将$(M,L)$对等价化。我们证明了这种泰赫穆勒空间的全局托勒密定理的一个版本,并用它来推导半范数的变形不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abundance and SYZ conjecture in families of hyperkahler manifolds
Let $L$ be a holomorphic line bundle on a hyperkahler manifold $M$, with $c_1(L)$ nef and not big. SYZ conjecture predicts that $L$ is semiample. We prove that this is true, assuming that $(M,L)$ has a deformation $(M',L')$ with $L'$ semiample. We introduce a version of the Teichmuller space that parametrizes pairs $(M,L)$ up to isotopy. We prove a version of the global Torelli theorem for such Teichmuller spaces and use it to deduce the deformation invariance of semiampleness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信