四元单位球的切片规则莫比乌斯变换的几何图形

Raul Quiroga-Barranco
{"title":"四元单位球的切片规则莫比乌斯变换的几何图形","authors":"Raul Quiroga-Barranco","doi":"arxiv-2409.09897","DOIUrl":null,"url":null,"abstract":"For the quaternionic unit ball $\\mathbb{B}$, let us denote by\n$\\mathcal{M}(\\mathbb{B})$ the set of slice regular M\\\"obius transformations\nmapping $\\mathbb{B}$ onto itself. We introduce a smooth manifold structure on\n$\\mathcal{M}(\\mathbb{B})$, for which the evaluation(-action) map of\n$\\mathcal{M}(\\mathbb{B})$ on $\\mathbb{B}$ is smooth. The manifold structure\nconsidered on $\\mathcal{M}(\\mathbb{B})$ is obtained by realizing this set as a\nquotient of the Lie group $\\mathrm{Sp}(1,1)$, Furthermore, it turns out that\n$\\mathbb{B}$ is a quotient as well of both $\\mathcal{M}(\\mathbb{B})$ and\n$\\mathrm{Sp}(1,1)$. These quotients are in the sense of principal fiber\nbundles. The manifold $\\mathcal{M}(\\mathbb{B})$ is diffeomorphic to\n$\\mathbb{R}^4 \\times S^3$.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry of the slice regular Möbius transformations of the quaternionic unit ball\",\"authors\":\"Raul Quiroga-Barranco\",\"doi\":\"arxiv-2409.09897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the quaternionic unit ball $\\\\mathbb{B}$, let us denote by\\n$\\\\mathcal{M}(\\\\mathbb{B})$ the set of slice regular M\\\\\\\"obius transformations\\nmapping $\\\\mathbb{B}$ onto itself. We introduce a smooth manifold structure on\\n$\\\\mathcal{M}(\\\\mathbb{B})$, for which the evaluation(-action) map of\\n$\\\\mathcal{M}(\\\\mathbb{B})$ on $\\\\mathbb{B}$ is smooth. The manifold structure\\nconsidered on $\\\\mathcal{M}(\\\\mathbb{B})$ is obtained by realizing this set as a\\nquotient of the Lie group $\\\\mathrm{Sp}(1,1)$, Furthermore, it turns out that\\n$\\\\mathbb{B}$ is a quotient as well of both $\\\\mathcal{M}(\\\\mathbb{B})$ and\\n$\\\\mathrm{Sp}(1,1)$. These quotients are in the sense of principal fiber\\nbundles. The manifold $\\\\mathcal{M}(\\\\mathbb{B})$ is diffeomorphic to\\n$\\\\mathbb{R}^4 \\\\times S^3$.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于四元单位球 $\mathbb{B}$,让我们用$\mathcal{M}(\mathbb{B})$ 表示映射 $\mathbb{B}$ 到自身的片正则莫比乌斯变换集。我们在$\mathcal{M}(\mathbb{B})$上引入了一种光滑流形结构,对于这种结构,$\mathcal{M}(\mathbb{B})$在$\mathbb{B}$上的评价(-作用)映射是光滑的。在 $\mathcal{M}(\mathbb{B})$ 上考虑的流形结构是通过把这个集合实现为李群 $\mathrm{Sp}(1,1)$ 的商来得到的,而且,事实证明 $\mathbb{B}$ 也是 $\mathcal{M}(\mathbb{B})$ 和 $\mathrm{Sp}(1,1)$ 的商。这些商都是主纤维束意义上的。流形 $\mathcal{M}(\mathbb{B})$ 与 $mathbb{R}^4 \times S^3$ 是差分同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometry of the slice regular Möbius transformations of the quaternionic unit ball
For the quaternionic unit ball $\mathbb{B}$, let us denote by $\mathcal{M}(\mathbb{B})$ the set of slice regular M\"obius transformations mapping $\mathbb{B}$ onto itself. We introduce a smooth manifold structure on $\mathcal{M}(\mathbb{B})$, for which the evaluation(-action) map of $\mathcal{M}(\mathbb{B})$ on $\mathbb{B}$ is smooth. The manifold structure considered on $\mathcal{M}(\mathbb{B})$ is obtained by realizing this set as a quotient of the Lie group $\mathrm{Sp}(1,1)$, Furthermore, it turns out that $\mathbb{B}$ is a quotient as well of both $\mathcal{M}(\mathbb{B})$ and $\mathrm{Sp}(1,1)$. These quotients are in the sense of principal fiber bundles. The manifold $\mathcal{M}(\mathbb{B})$ is diffeomorphic to $\mathbb{R}^4 \times S^3$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信