通过 WDVV 方程枚举有理无顶曲线

Indranil Biswas, Apratim Choudhury, Ritwik Mukherjee, Anantadulal Paul
{"title":"通过 WDVV 方程枚举有理无顶曲线","authors":"Indranil Biswas, Apratim Choudhury, Ritwik Mukherjee, Anantadulal Paul","doi":"arxiv-2409.10238","DOIUrl":null,"url":null,"abstract":"We give a conjectural formula for the characteristic number of rational\ncuspidal curves in the projective plane by extending the idea of Kontsevich's\nrecursion formula (namely, pulling back the equality of two divisors in the\nfour pointed moduli space). The key geometric input that is needed here is that\nin the closure of rational cuspidal curves, there are two component rational\ncurves which are tangent to each other at the nodal point. While this fact is\ngeometrically quite believable, we haven't as yet proved it; hence our formula\nis for the moment conjectural. The answers that we obtain agree with what has\nbeen computed earlier Ran, Pandharipande, Zinger and Ernstrom and Kennedy. We\nextend this technique (modulo another conjecture) to obtain the characteristic\nnumber of rational quartics with an E6 singularity.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enumeration of Rational Cuspidal Curves via the WDVV equation\",\"authors\":\"Indranil Biswas, Apratim Choudhury, Ritwik Mukherjee, Anantadulal Paul\",\"doi\":\"arxiv-2409.10238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a conjectural formula for the characteristic number of rational\\ncuspidal curves in the projective plane by extending the idea of Kontsevich's\\nrecursion formula (namely, pulling back the equality of two divisors in the\\nfour pointed moduli space). The key geometric input that is needed here is that\\nin the closure of rational cuspidal curves, there are two component rational\\ncurves which are tangent to each other at the nodal point. While this fact is\\ngeometrically quite believable, we haven't as yet proved it; hence our formula\\nis for the moment conjectural. The answers that we obtain agree with what has\\nbeen computed earlier Ran, Pandharipande, Zinger and Ernstrom and Kennedy. We\\nextend this technique (modulo another conjecture) to obtain the characteristic\\nnumber of rational quartics with an E6 singularity.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过扩展康采维奇递推公式的思想(即在四尖模空间中拉回两个除数的相等),给出了投影面中有理尖顶曲线特征数的猜想公式。这里需要输入的关键几何信息是,在有理尖顶曲线的闭合中,有两条有理曲线在结点处相切。虽然这一事实在几何学上是可信的,但我们还没有证明它,因此我们的公式目前只是猜想。我们得到的答案与冉-潘达里潘德、辛格、恩斯特龙和肯尼迪先前计算的结果一致。我们将这一技术(根据另一个猜想)推广到具有 E6 奇点的有理四元数的特征数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enumeration of Rational Cuspidal Curves via the WDVV equation
We give a conjectural formula for the characteristic number of rational cuspidal curves in the projective plane by extending the idea of Kontsevich's recursion formula (namely, pulling back the equality of two divisors in the four pointed moduli space). The key geometric input that is needed here is that in the closure of rational cuspidal curves, there are two component rational curves which are tangent to each other at the nodal point. While this fact is geometrically quite believable, we haven't as yet proved it; hence our formula is for the moment conjectural. The answers that we obtain agree with what has been computed earlier Ran, Pandharipande, Zinger and Ernstrom and Kennedy. We extend this technique (modulo another conjecture) to obtain the characteristic number of rational quartics with an E6 singularity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信