关于几种特殊类型赫米流形的街天猜想

Yuqin Guo, Fangyang Zheng
{"title":"关于几种特殊类型赫米流形的街天猜想","authors":"Yuqin Guo, Fangyang Zheng","doi":"arxiv-2409.09425","DOIUrl":null,"url":null,"abstract":"A Hermitian-symplectic metric is a Hermitian metric whose K\\\"ahler form is\ngiven by the $(1,1)$-part of a closed $2$-form. Streets-Tian Conjecture states\nthat a compact complex manifold admitting a Hermitian-symplectic metric must be\nK\\\"ahlerian (i.e., admitting a K\\\"ahler metric). The conjecture is known to be\ntrue in dimension $2$ but is still open in dimensions $3$ or higher. In this\narticle, we confirm the conjecture for some special types of compact Hermitian\nmanifolds, including the Chern flat manifolds, non-balanced Bismut torsion\nparallel manifolds (which contains Vaisman manifolds as a subset), and\nquotients of Lie groups which are either almost ableian or whose Lie algebra\ncontains a codimension $2$ abelian ideal that is $J$-invariant. The last case\npresents adequate algebraic complexity which illustrates the subtlety and\nintricacy of Streets-Tian Conjecture.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"201 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Streets-Tian Conjecture on several special types of Hermitian manifolds\",\"authors\":\"Yuqin Guo, Fangyang Zheng\",\"doi\":\"arxiv-2409.09425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Hermitian-symplectic metric is a Hermitian metric whose K\\\\\\\"ahler form is\\ngiven by the $(1,1)$-part of a closed $2$-form. Streets-Tian Conjecture states\\nthat a compact complex manifold admitting a Hermitian-symplectic metric must be\\nK\\\\\\\"ahlerian (i.e., admitting a K\\\\\\\"ahler metric). The conjecture is known to be\\ntrue in dimension $2$ but is still open in dimensions $3$ or higher. In this\\narticle, we confirm the conjecture for some special types of compact Hermitian\\nmanifolds, including the Chern flat manifolds, non-balanced Bismut torsion\\nparallel manifolds (which contains Vaisman manifolds as a subset), and\\nquotients of Lie groups which are either almost ableian or whose Lie algebra\\ncontains a codimension $2$ abelian ideal that is $J$-invariant. The last case\\npresents adequate algebraic complexity which illustrates the subtlety and\\nintricacy of Streets-Tian Conjecture.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"201 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

赫米蒂-交映度量是一种赫米蒂度量,其 K\"ahler 形式由封闭的 2 元形式的 $(1,1)$ 部分给出。Streets-Tian猜想指出,容纳赫米蒂-交错度量的紧凑复流形一定是K(阿勒)的(即容纳一个K(阿勒)度量)。众所周知,这个猜想在维数为 2 美元时是真实的,但在维数为 3 美元或更高时仍是未知数。在这篇文章中,我们证实了一些特殊类型的紧凑赫尔墨斯流形的猜想,包括车恩平流形、非平衡俾斯麦扭转平行流形(其中包含作为子集的维斯曼流形),以及几乎是能化的或其列代数包含一个标度为 2$ 的无性理想且 $J$ 不变的列群的平方根。最后一种情况代表了充分的代数复杂性,它说明了街天猜想的微妙性和复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Streets-Tian Conjecture on several special types of Hermitian manifolds
A Hermitian-symplectic metric is a Hermitian metric whose K\"ahler form is given by the $(1,1)$-part of a closed $2$-form. Streets-Tian Conjecture states that a compact complex manifold admitting a Hermitian-symplectic metric must be K\"ahlerian (i.e., admitting a K\"ahler metric). The conjecture is known to be true in dimension $2$ but is still open in dimensions $3$ or higher. In this article, we confirm the conjecture for some special types of compact Hermitian manifolds, including the Chern flat manifolds, non-balanced Bismut torsion parallel manifolds (which contains Vaisman manifolds as a subset), and quotients of Lie groups which are either almost ableian or whose Lie algebra contains a codimension $2$ abelian ideal that is $J$-invariant. The last case presents adequate algebraic complexity which illustrates the subtlety and intricacy of Streets-Tian Conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信