通过伯格伦-胡布什转置的极值佐佐木度量的不存在性

Jaime Cuadros Valle, Ralph R. Gomez, Joe Lope Vicente
{"title":"通过伯格伦-胡布什转置的极值佐佐木度量的不存在性","authors":"Jaime Cuadros Valle, Ralph R. Gomez, Joe Lope Vicente","doi":"arxiv-2409.09720","DOIUrl":null,"url":null,"abstract":"We use the Berglund-H\\\"ubsch transpose rule from classical mirror symmetry in\nthe context of Sasakian geometry and results on relative K-stability in the\nSasaki setting developed by Boyer and van Coevering to exhibit examples of\nSasaki manifolds of complexity 3 or complexity 4 that do not admit any extremal\nSasaki metrics in its whole Sasaki-Reeb cone which is of Gorenstein type.\nPreviously, examples with this feature were produced in by Boyer and van\nCoevering for Brieskorn-Pham polynomials or their deformations. Our examples\nare based on the more general framework of invertible polynomials. In\nparticular, we construct families of examples of links with the following\nproperty: if the link satisfies the Lichnerowicz obstruction of Gauntlett,\nMartelli, Sparks and Yau then its Berglund-H\\\"ubsch dual admits a perturbation\nin its local moduli, a link arising from a Brieskorn-Pham polynomial, which is\nobstructed to admitting extremal Sasaki metrics in its whole Sasaki-Reeb cone.\nMost of the examples produced in this work have the homotopy type of a sphere\nor are rational homology spheres.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-existence of extremal Sasaki metrics via the Berglund-Hübsch transpose\",\"authors\":\"Jaime Cuadros Valle, Ralph R. Gomez, Joe Lope Vicente\",\"doi\":\"arxiv-2409.09720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the Berglund-H\\\\\\\"ubsch transpose rule from classical mirror symmetry in\\nthe context of Sasakian geometry and results on relative K-stability in the\\nSasaki setting developed by Boyer and van Coevering to exhibit examples of\\nSasaki manifolds of complexity 3 or complexity 4 that do not admit any extremal\\nSasaki metrics in its whole Sasaki-Reeb cone which is of Gorenstein type.\\nPreviously, examples with this feature were produced in by Boyer and van\\nCoevering for Brieskorn-Pham polynomials or their deformations. Our examples\\nare based on the more general framework of invertible polynomials. In\\nparticular, we construct families of examples of links with the following\\nproperty: if the link satisfies the Lichnerowicz obstruction of Gauntlett,\\nMartelli, Sparks and Yau then its Berglund-H\\\\\\\"ubsch dual admits a perturbation\\nin its local moduli, a link arising from a Brieskorn-Pham polynomial, which is\\nobstructed to admitting extremal Sasaki metrics in its whole Sasaki-Reeb cone.\\nMost of the examples produced in this work have the homotopy type of a sphere\\nor are rational homology spheres.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用经典镜像对称中的Berglund-H\"ubsch转置规则,结合Boyer和van Coevering在Sasaki环境中提出的关于相对K稳定性的结果,展示了复杂度为3或4的Sasaki流形的例子,这些流形在其整个Sasaki-Reeb锥中不允许任何极值Sasaki度量,而这些极值是Gorenstein类型的。在此之前,Boyer 和 vanCoevering 针对 Brieskorn-Pham 多项式或其变形提出了具有这一特征的例子。我们的例子基于可逆多项式的更一般框架。特别是,我们构建了具有以下性质的链路范例族:如果链路满足 Gauntlett、Martelli、Sparks 和 Yau 的 Lichnerowicz 阻碍,那么它的 Berglund-H\"ubsch 对偶在其局部模量中允许一个扰动,即由 Brieskorn-Pham 多项式产生的链路,它在其整个 Sasaki-Reeb 圆锥中被阻碍为允许极值 Sasaki 度量。这项工作中产生的大多数例子都具有球面的同调类型,或者是有理同调球面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-existence of extremal Sasaki metrics via the Berglund-Hübsch transpose
We use the Berglund-H\"ubsch transpose rule from classical mirror symmetry in the context of Sasakian geometry and results on relative K-stability in the Sasaki setting developed by Boyer and van Coevering to exhibit examples of Sasaki manifolds of complexity 3 or complexity 4 that do not admit any extremal Sasaki metrics in its whole Sasaki-Reeb cone which is of Gorenstein type. Previously, examples with this feature were produced in by Boyer and van Coevering for Brieskorn-Pham polynomials or their deformations. Our examples are based on the more general framework of invertible polynomials. In particular, we construct families of examples of links with the following property: if the link satisfies the Lichnerowicz obstruction of Gauntlett, Martelli, Sparks and Yau then its Berglund-H\"ubsch dual admits a perturbation in its local moduli, a link arising from a Brieskorn-Pham polynomial, which is obstructed to admitting extremal Sasaki metrics in its whole Sasaki-Reeb cone. Most of the examples produced in this work have the homotopy type of a sphere or are rational homology spheres.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信